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EXECUTIVE SUMMARY 

Over the last three decades, there have been continuous efforts in developing failure criteria for 
unidirectional fiber composites and their laminates. Currently, there exist a large number of 
lamina failure criteria and laminate failure analysis methods. In this project, a comprehensive 
and objective study of lamina and laminate failure criteria was performed. Comparisons among 
the commonly used failure criteria were made for failure in unidirectional composites under 
various loading cases. From these comparisons, the characteristics of these criteria were 
identified and discussed. Further, with the aid of some limited experimental lamina and laminate 
strength data available in the literature and new data generated by the authors, an attempt was 
made to select the failure criteria and laminate analysis methods that are mechanistically sound 
and are capable of accurately predicting lamina and laminate strengths for states of combined 
stresses. It was found that those lamina failure criteria which separate fiber and matrix failure 
modes most accurately predict lamina and laminate strength. 

ix/x 



1. INTRODUCTION. 

Over the last three decades, there have been continuous efforts in developing failure criteria for 
unidirectional fiber composites and their laminates. Currently, there exist a large number of 
lamina failure criteria and laminate failure analysis methods. A comprehensive evaluation of the 
accuracy of these failure criteria in the light of available experimental data seems to be overdue. 

There are two major elements in the analysis of composite laminates, i.e., lamina failure criteria 
and laminate stress analysis with lamina stiffness reduction. Between the two, the accuracy of 
the failure criterion is the most crucial issue. 

Evaluating these lamina failure criteria is a two part process. The first step is to characterize the 
criteria in their ability to predict failure in a unidirectional composite or a lamina. These are the 
precise conditions for which the criteria were designed. Those criteria which correlate with 
experimental data and those criteria which are mechanistically sound can be identified. 

Secondly, the lamina failure criteria must be evaluated in their ability to predict the failure 
strength of a laminate comprised of laminae with varying fiber orientations. Endorsing a lamina 
failure criteria based on its success with unidirectional failure predictions is premature. In a 
laminate, failure mechanisms are more complicated (i.e., in situ laminae can exhibit considerably 
higher matrix strength than experimentally determined through unidirectional lamina tests). A 
lamina failure criterion must be flexible and accommodate the more complicated nature of 
laminate analysis. 

In this study, six failure criteria which appear representative of those that have been proposed 
over the years are investigated. These failure criteria which appear representative of most of 
those which have been proposed over the years are maximum stress, maximum strain, Hill-Tsai, 
Tsai-Wu, Hashin-Rotem, and Hashin criteria.  Maximum stress and maximum strain criteria 
assume no stress interaction. Hill-Tsai and Tsai-Wu criteria include full stress interaction. 
Hashin-Rotem and Hashin criteria involve partial stress interaction. Existing lamina and 
laminate strength data are used to evaluate these failure criteria. For some laminates under 
certain loading conditions, all six criteria may predict similar results, and their performance 
cannot be ranked. Therefore, a number of laminates are identified for which the strength 
predictions according to these six criteria are substantially different. Off-axis coupon specimens 
were cut from those laminates and tested in uniaxial tension. Adhesive film was placed along all 
the interfaces of the laminae to suppress failure due to free edge stresses. To avoid complications 
arising from extension-shear coupling in some of the off-axis specimens, special oblique end tabs 
were used. These additional strength data are used to help rank the six strength criteria. 

2. LAMINA FAILURE ANALYSIS. 

The purpose of the lamina failure criterion is to determine the strength and mode of failure of a 
unidirectional composite or lamina in a state of combined stress. All the existing lamina failure 
criteria are basically phenomenological in which detailed failure processes are not described 
(macromechanical). Further, they are all based on linear elastic analysis. Nahast [1] and 
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Labossiere and Neal [2] have made an extensive literature survey of existing lamina failure

criteria for composites.


A list of the lamina failure criteria taken from references 1 and 2 is presented in appendix A.


The majority of the lamina failure criteria were developed for two-dimensional stress states in

orthotropic materials. Some of the criteria, such as the Tsai-Wu criterion which is a completely

general tensor polynomial failure equation, have reduced forms in order to utilize two strength

properties for two-dimensional stress states. In this study, only such 2-D criteria are included.

The in-plane principal strengths in a composite system are denoted as follows:


• 	 X & X : tensile and compressive strengths, respectively, in fiber direction.

 $

• 	 Y & Y´:  tensile and compressive strengths, respectively, in transverse direction

(perpendicular to fibers). 

 $

• 	 S: shear strength


For a strain based analysis, the corresponding failure strains are Xε , Xε´, Yε , Yε´, and Sε . 

The ability of a lamina failure criterion to determine mode of failure is essential in bringing this 
analysis tool to the laminate level (an individual lamina failure within a laminate does not 
necessarily constitute ultimate failure).  Modes of failure are defined as 

• % Fiber Breakage (mode 1): longitudinal stress (σ11) or longitudinal strain (ε11) dominates 
lamina failure. 

 	

• 	 Transverse Matrix Cracking (mode 2): transverse stress (σ22) or transverse strain (ε22) 
dominates lamina failure. 

 	

• 	 Shear Matrix Cracking (mode 3):  shear stress (τ12) or shear strain (γ12) dominates lamina 
failure. 

It is important to point out that both mode 2 and mode 3 are matrix failures. The two modes are 
separated because they are caused by different stress components according to some criteria. For 
example, according to the Maximum Stress Criterion, mode 2 should be interpreted as matrix 
cracking due to σ22, and mode 3 should be interpreted as matrix cracking due to τ12. 

2.1 LAMINA FAILURE CRITERIA. 

Lamina failure criteria can be categorized into three groups. 

• 	 Limit Criteria:  These criteria predict failure load and mode by comparing lamina stresses 
σ11 , σ22, and τ12 (or strains ε11 , ε22 , and γ12 ) with corresponding strengths separately. Interaction 
among the stresses (or strains) is not considered. 
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• 	 Interactive Criteria: These criteria predict the failure load by using a single quadratic or 
higher order polynomial equation involving all stress (or strain) components. Failure is assumed 
when the equation is satisfied. The mode of failure is determined indirectly by comparing the 
stress/strength ratios. 
 $

• 	 Separate Mode Criteria: These criteria separate the matrix failure criterion from the fiber

failure criterion. The equations can be dependent on either one or more stress components;

therefore, stress interaction varies from criterion to criterion within this group. If the failure

equation contains only one stress component, then the failure mode corresponds to that particular

direction; otherwise, the failure mode can be determined as is done with the interactive criteria by

comparing stress/strength ratios of the satisfied equation.


In the interest of keeping the project manageable, it was necessary to choose only a representative 
subset of the criteria listed in appendix A. In total, six lamina failure criteria were selected to be 
examined in further detail. From the limit criteria group, Maximum Stress and Maximum Strain 
were chosen. From the interactive criteria group, Hill-Tsai (also called Tsai-Hill or Azzi-Hill) 
and Tsai-Wu were chosen. In an AIAA Failure Criteria Survey [3], 80% of the respondents said 
they utilized one of these four lamina failure criteria. Figure 1 shows the breakdown for each 
criterion. Maximum Strain is most commonly used at 30% with Maximum Stress next at 22%. 
Hill-Tsai and Tsai-Wu usage came in at 17% and 12% respectively.  The popularity of these four 
criteria and the fact that they are the most generalized and representative of their respective 
groups was the basis for their inclusion. 

The final two criteria come from the separate mode group. Both Hashin and Hashin-Rotem 
criteria provide for separate treatment of matrix and fiber failure modes while maintaining some 
degree of stress interaction for the individual modes. 

The six lamina failure criteria which are considered are: 

• 	 Limit Criteria: 

Maximum Stress: 
σ 11 = 1 fiber failure

X 

σ22 =1 transverse matrix cracking (1)
Y 

τ 12 = 1 shear matrix cracking
S 
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Maximum Strain: 
ε 11 = 1 fiber failure 
Xε 

ε 22 = 1 transverse matrix cracking (2)
Yε 

γ 12 = 1 shear matrix cracking
Sε 

• 	 Interactive Criteria: 

Hill-Tsai: 
2 2 2 

(
σ 11 ) + (

σ 22 ) − (
σ 11 )(

σ 22 ) + (
τ 12 ) = 1 (3)

X Y X X S 

Tsai-Wu: 

2 2F1σ 11 + F2σ 22 + F11σ 11 + F22σ 22 + 2F12σ 11σ 22 + F66τ 12
2 = 1 (4) 

where 

F1 = 1 + 1
, F2 = 1 + 1 

, F11 = −1 
, F22 = −1 

, F66 = 1
2 , F12 = experimentally 

X X ′ Y Y  ′ XX ′ YY ′ S 
determined 

• 	 Separate Mode Criteria: 

Hashin-Rotem: 
σ 11 = 1 fiber failure 

X 

2 2 
( 
σ 22 ) + ( 

τ 12 ) = 1 matrix failure (5)
Y S 

Hashin: 
2 2 

(
σ 11 ) + (

τ 12 ) = 1 fiber failure (tension)
X S 

σ 11 = 1 fiber failure (compression) (6)
X ′ 

2 2 
( 
σ 22 ) + ( 

τ 12 ) = 1 matrix failure 
Y S 
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FIGURE 1. RESULTS OF AIAA FAILURE CRITERIA SURVEY 

For Maximum Stress, Maximum Strain, Hill-Tsai, and Hashin-Rotem, the criterion is 
generalized for either tensile or compressive stresses; the corresponding (tensile or compressive) 
strength value must be chosen based on the sign of the applied stress. The Tsai-Wu criterion is 
designed for use in all quadrants of the stress plane; thus, it may be used directly without 
modification for different stress signs. The Tsai-Wu criterion requires a biaxial test to 
experimentally determine the interaction term F12. It has been suggested to use F12 = 1/(2XX´), 
which reduces Tsai-Wu down to the Hoffman criterion. Narayanaswami and Adelman [4] found 
this term to be insignificant for the most part, and suggested setting it equal to zero. Cui et al. 
[5] also found that F12 = 0 gave adequate accuracy for engineering purposes. Thus, to avoid 
ambiguity, F12 is set equal to zero in the present study. 

The Hashin criterion listed here is a slight modification of the 2-D criterion presented in his 1980 
paper [6]. In that paper, Hashin suggested using a combination of both axial and transverse shear 
strengths SΑ and SΤ for the compressive matrix equation. Since it is difficult to find transverse 
shear strength values in the literature, the tensile equation given is used as the compressive 
equation by simply replacing Y with Y´. 
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2.2 COMPARISON AMONG LAMINA FAILURE CRITERIA. 

The theoretical comparisons of the six lamina failure criteria discussed in the following 
paragraphs allow each criterion to be evaluated on the basis of purely mechanistic reasoning. 
Separating the theoretical comparisons from the correlation with experimental data helps focus 
on objectively evaluating just the mechanics of the criteria. The ability to accurately predict data 
is addressed in later sections. 

A FORTRAN program was written in order to efficiently analyze all six lamina failure criteria 
under all possible loading conditions. The code was designed to be flexible. It allows for an 
expandable database of different material properties. Laminate configurations and loading 
conditions are easily manipulated. The user has a variety of output files to choose from. Ready-
to-plot output files allow the user to immediately plot and interpret the results. The code together 
with representative examples is included in appendix B. 

2.2.1 	 Bidirectional Stress Plane. 

A series of failure envelopes for combined stresses is presented to graphically show the 
characteristics of the six selected lamina failure criteria. These envelopes are composed of 
failure stresses normalized by the lamina’s respective tensile strengths X and Y or shear 
strength S. For these graphs, the material properties of the AS4/3501-6 graphite/epoxy system 
tested by Sun and Zhou [7] is used. Table 1 lists elastic and strength constants. 

TABLE 1. 	MODULI AND STRENGTH VALUES FOR THE AS4/3501-6 GRAPHITE-
EPOXY SYSTEM [7] 

E1 138.90 GPa X 2206.0 MPa 
E2 9.86 GPa X´ -2013.0 MPa 
G12 5.24 GPa Y 56.5 MPa 
ν12 0.30 Y´ -206.8 MPa 

Ply Thickness:  0.132 mm S 110.3 MPa 

Figure 2 is a plot of the selected criteria in a σ11 - σ22 stress plane (τ12 = 0).  The Maximum 

Stress envelope is a simple rectangle bounded by the failure loads ±σ11 and ±σ22. Again, because 
these loads are normalized with X and Y, compressive σ11 (quadrants II and III), and compressive 
σ22 (quadrants III and IV) failure segments do not equal unity (i.e., X > |X´| and Y < |Y´| for this 
case). 

For the analysis using the Maximum Strain criterion, failure strains were calculated from the 
strength parameters using a linear relationship: 

X X ′ Y Y ′ S
Xε = , Xε′ = , Yε = , Yε′ = , Sε = (7)

E1 E1 E2 E2 G12 
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FIGURE 2. 	COMPARISON OF LAMINA FAILURE CRITERIA UNDER σ11 - σ22 

BIAXIAL STRESS 

The Maximum Strain envelope is close to that of the Maximum Stress but is slightly skewed due 
to the effect of Poisson’s ratio. There is considerably more skewing in the vertical (σ22) direction 
because ν12 >> ν21 in unidirectional fiber composites. 

Both the Hill-Tsai and Tsai-Wu criteria allow quadratic stress interactions; therefore, each has a 
curved failure envelope. Both of these criteria match up with the two limit criteria for all four 
unidirectional loading cases (±σ11 with σ22 = 0 and ±σ22 with σ11 = 0) as expected. The Tsai-Wu 
criterion is a continuous curve throughout all four quadrants. The only parameters that vary are 
the stress terms. The Tsai-Wu criterion includes linear stress terms. Hill-Tsai, on the other hand, 
is a purely quadratic criterion. In order to account for differences in tensile and compressive 
strengths commonly found in fiber composites, this criterion uses the appropriate strength values 
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in each quadrant (X or X´ and Y or Y´ accordingly). Though both are interactive, Tsai-Wu and 
Hill-Tsai produce different failure envelopes in the stress plane. In the compressive σ22 

quadrants, the Tsai-Wu failure envelope extends beyond the longitudinal strengths X and X´. 

Finally, both the Hashin and Hashin-Rotem criteria reduce to the Maximum Stress criterion in 
the σ11 - σ22  plane since τ12 = 0. 

A plot of the selected criteria in a σ11 - τ12 stress plane (σ22 = 0) is shown in figure 3. The 
Maximum Stress envelope in this stress plane is again a rectangle, bounded by the failure loads 
±σ11 normalized by X and ±τ12 normalized by S. The Maximum Strain criterion predicts exactly 
the same loads as the Maximum Stress criterion. The Hashin-Rotem criterion also reduces to the 
Maximum Stress criterion in this stress plane.  Again, Hill-Tsai and Tsai-Wu failure envelopes 
intersect the other three criteria for the four unidirectional loading cases (±σ11 with τ12 = 0 and 
±τ12 with σ11 = 0).  In the biaxial loading regions, the two interactive criteria are nearly identical. 

FIGURE 3. COMPARISON OF LAMINA FAILURE CRITERIA UNDER σ11 - τ12 

BIAXIAL STRESS 
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The linear stress term σ11 in Tsai-Wu produces a slightly higher or lower failure load than in 
Hill- Tsai, depending on the quadrant. Interestingly, the Hashin criterion reduces to Maximum 
Stress with a compressive σ11 and reduces to Hill-Tsai with tensile σ11. 

Figure 4 contains a plot of the six criteria in the σ22 - τ12 stress plane (σ11 = 0).  Maximum Stress 
and Maximum Strain are identical rectangles showing ±σ22 normalized by Y and ±τ12 normalized 
by S. Tsai-Wu and Hill-Tsai produce curved envelopes due to σ22-τ12 interaction. Again, the 
linear σ22 term in Tsai-Wu produces a different shape than Hill-Tsai, pushing the failure 
envelope beyond the lamina shear strength S. Hashin and Hashin-Rotem in this stress plane 
match Hill-Tsai exactly considering σ11 = 0. As expected, all six criteria intersect at the four 
unidirectional loading cases (±σ22 with τ12 = 0 and ±τ12 with σ22 = 0). 

FIGURE 4. COMPARISON OF LAMINA FAILURE CRITERIA UNDER σ22 - τ12 

BIAXIAL STRESS 
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2.2.2 Off-Axis Loading. 

The six lamina failure criteria may also be characterized by their failure predictions of a lamina 
subjected to off-axis loading.  Figure 5 shows a schematic defining off-axis loading in this case. 
The angle between the applied load σxx and the lamina fibers is defined as θ, thus, the lamina 
stresses σ11, σ22, and τ12 must be determined through transformation of σxx to the lamina 
coordinate system. For instance, σ11 = σxx and σ22 = 0 for θ = 0°. Likewise, σ22 = σxx and 
σ11 = 0 for θ = 90°. Figure 6 shows the predictions of the six criteria for a graphite epoxy lamina 
having the material properties given in table 1. It is immediately evident all six criteria predict 
very similar failure stress σxx over the entire off-axis range. Figure 7 zooms in on the region 
θ€= 0° - 10° to facilitate the discussion. 

FIGURE 5. OFF-AXIS LOADING OF A LAMINA 

FIGURE 6. COMPARISON OF LAMINA FAILURE CRITERIA FOR OFF-AXIS LOADING
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FIGURE 7. 	DETAILED COMPARISON OF LAMINA FAILURE CRITERIA FOR 
OFF-AXIS LOADING 

° All six lamina failure criteria predict a failure load of X at θ = 0° and Y at θ = 90 . The 
Maximum Stress criterion predicts three separate failure regions representing the three possible 
modes of failure; fiber breakage, transverse matrix cracking, and shear matrix cracking.  As the 

° off-axis angle rotates from 0 to 90°, the stress distribution in the lamina varies. Over the course 
of fiber rotation, failure is predicted by three different equations thus producing the three separate 
regions. Between θ = 0° and 2.9°, fiber breakage is predicted (mode 1). At θ = 0°, the failure 
load is simply X. As θ increases in this region, the predicted failure load actually increases only 
slightly, see figure 7. This is because the σ11/X ratio remains dominant even though the σ11 

component in the lamina decreases; thus, a larger applied load is necessary to satisfy the 
dominant equation. At the critical angle θ = 2.9°, the τ12/S ratio becomes dominant; therefore, 
the failure mode switches to shear matrix cracking (mode 3). This region continues until θ  = 
27.1° where failure mode switches again to transverse matrix cracking (mode 2) with the σ22/Y 
ratio becoming dominant. This region continues through 90° where the failure load is simply Y. 
It is important to note that these critical angles representing changes in failure mode are specific 
to this material system. Using a different system would change these critical angles, though for 
most fiber reinforced composites, similar transition angles should be expected. 
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The Maximum Strain criterion produces a failure curve similar to that of Maximum Stress. From 
θ = 0° to 2.9°, failure occurs in mode 1. Due to Poisson’s effect, Maximum Strain predicts a 
slightly higher failure load than Maximum Stress in this region. In the shear region (mode 3), 
Maximum Strain results are identical to the Maximum Stress results. Maximum Strain’s shear 
region extends to 29° where failure switches to mode 2. Again, Poisson’s effect slightly 
increases the Maximum Strain prediction compared with Maximum Stress until they meet at θ = 
90°. Using measured ultimate strains that include nonlinear effects would insignificantly alter 
the character of this failure curve. Since the differences in the failure predictions of Maximum 
Strain and Maximum Stress are so slight, they are plotted as one curve in both figures 6 and 7. 

The two interactive criteria, Hill-Tsai and Tsai-Wu, give exactly the same predictions in the three 
failure regions as the Maximum Stress criterion, with critical angles at 2.9° and 27.1° for mode 
1-3 and mode 3-2 transitions, respectively.  Because these criteria are completely interactive, 
their failure curves remain smooth throughout the entire off-axis loading case. This is of special 
note in the fiber-shear dominated region from θ = 0° to roughly θ = 10° seen in figure 7.  In this 
area, both σ11 and τ12 have significant contributions. Because X >> S, a criterion which couples 
these stress components (e.g., Hill-Tsai and Tsai-Wu) will predict a noticeably lower value in 
this area than a limit criterion (Maximum Stress and Strain).  For the region where both τ12 and 
σ22 have significant contributions, the difference between the limit and interactive criteria 
diminishes because Y and S are of similar magnitude. The two interactive criteria eventually 
converge with the two limit criteria at θ = 90° (only σ22 exists). 

The two separate mode criteria exhibit characteristics of both the limit and interactive criteria. 
They yield the same three failure regions as the other criteria.  Due to its ability to separate 
modes, Hashin-Rotem’s failure prediction is identical to Maximum Stress in the fiber (σ11) 
dominated region θ = 0° to 2.9°. After the mode 1-3 transition at 2.9°, Hashin-Rotem’s failure 
prediction begins to move away from Maximum Stress and towards the prediction of Hill-Tsai 
(See figure 7). Note that as θ approaches 90°, the σ11 component becomes insignificant, leaving 
only the σ22 and τ12 components. Hill-Tsai and Hashin-Rotem are identical in the σ22 - τ12 plane, 
thus the merging.  A final failure load of Y is predicted at θ = 90° as expected. 

The Hashin predictions initially coincide with Hill-Tsai’s predictions since they both couple σ11 

and τ12. After the mode 1-3 transition, the Hashin criterion continues to predict the fiber 
dominant behavior which couples σ11 and τ12, suggesting shear failure instead of fiber failure. 
Since Hill-Tsai begins to account for the growing σ22 term, the Hashin prediction becomes 
slightly higher. At about θ = 10°, the predicted failure mode of the Hashin criterion switches to 
matrix failure and, with σ11 vanishing, the prediction merges with Hill-Tsai at θ = 90°. 

2.2.3 Pure Shear. 

The six lamina failure criteria are compared by their failure predictions in a pure shear loading 
situation. The angle between the applied shear load and the lamina fibers is defined as θ as in the 
unidirectional off-axis loading previously discussed. The shear loading is given by ±τxy  (σxx = 
σyy = 0).  A lamina composed of the material in table 1 is used for this analysis. 
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Figure 8 shows a +τxy loading case for a single lamina rotated at an angle θ. All six criteria 
predict a failure load of S at θ = 0° and 90° as expected. The criteria are all symmetric about 
θ = 45° where a failure load of approximately -Y´ (compressive) is predicted. Due to this 
symmetry, the discussion will go through θ = 45° only.  The criteria all predict shear matrix 
cracking from 0° to 30.8° and transverse matrix cracking from 30.8° to 45°. As the lamina fiber 
direction rotates from 0° to 90°, the lamina shear stress +τ12 goes down as the other two 
components σ11 and σ22 become larger; for positive shear, σ11 becomes more tensile and σ22 

becomes more compressive though they have equal magnitudes. For θ = 0°, τ12 = τxy and 
σ11 = σ22 = 0. For θ = 45°, τ12 = 0 and σ11 = -σ22 = τxy. The stress components σ11 and σ22 

always remain of equal magnitude, thus fiber failure never occurs (Y´ << X). 

FIGURE 8. 	COMPARISON OF LAMINA FAILURE CRITERIA FOR POSITIVE 
PURE SHEAR 

For the Maximum Stress criterion, the mode 3-2 transition point dramatically alters the failure 
prediction. The σ22/Y´ equation becomes dominant after the transition at θ = 30.8°. Because σ22 

is smaller at 30.8° than at 45°, this equation actually requires a larger ultimate τxy to satisfy the 
dominant equation. This explains the drastic change in the failure curve. Maximum Stress and 
Maximum Strain differ only in this transverse failure region due to Poisson’s effect and are 
plotted as one curve.  They both predict a maximum failure load at the shear-transverse failure 
transition. 
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The interactive criteria produce smooth curves for this loading case, even through they do 
differentiate between modes of failure. The linear terms in Tsai-Wu gives its failure curve a 
different character than Hill-Tsai, though both clearly eliminate the cusp formed by the limit 
criteria.  Both separate mode criteria and Hashin and Hashin-Rotem match up closely with Hill-
Tsai. The separate mode criteria deviate slightly due to the small σ11/X contribution found in the 
Hill-Tsai criterion near θ = 45° where σ11 becomes a maximum. All four interactive and separate 
mode criteria reach a maximum at 45° where σ22 is dominant and at its maximum ( τxy = -Y´ ). 

Figure 9 shows a -τxy loading case for a single lamina rotated to an angle θ. Like the +τxy loading 
case, all criteria are symmetric about θ = 45° and switch from a shear matrix cracking failure to 
transverse matrix cracking at θ = 13.4°. At θ = 0° and 90°, a strength of -S is predicted for all 
criteria while a strength of approximately -Y (tensile) is predicted at θ = 45°. The applied load 
τxy transforms into lamina stress components as in the +τxy case, but because the sign of the 
applied shear is opposite, σ11 is compressive and σ22 is tensile after transformation. It is 
interesting to note that the mode 3-2 transition occurs much quicker in the -τxy case than that of 
+τxy because Y < Y´.  This allows the dominate shear region to switch over to transverse failure 
sooner. 

The limit criteria predict an increasing failure load in the shear failure region. This is due to a 
decrease in the magnitude of the component τ12, even though the τ12/S ratio is dominant; higher 
loads are predicted in order to satisfy the dominant equation. Maximum Stress and Maximum 
Strain differ slightly in the transverse failure region due to Poisson’s effect. Hill-Tsai, Tsai-Wu, 
Hashin-Rotem, and Hashin, due to their allowance of stress interaction between σ22 and τ12, all 
predict smooth failure curves, eliminating the sharp jumps seen in the limit criteria.  Hill-Tsai, 
Hashin-Rotem, and Hashin are nearly identical with only a small σ11/X contribution in the Hill-
Tsai criterion separating them. Tsai-Wu’s failure curve varies from the other interactive criteria 
due to its linear terms, primarily the σ22 term. Again, because the shear loading is negative, the 
lamina is weakest at θ = 45°, in contrast with the positive shear case in which it is strongest 
at 45°. 

In contrast to off-axis loading, in the case of pure shear loading these criteria predict quite 
different lamina strengths. 
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FIGURE 9. 	COMPARISON OF LAMINA FAILURE CRITERIA FOR NEGATIVE 
PURE SHEAR 

2.3 COMPARISON WITH EXPERIMENTAL DATA. 

The ability of the lamina failure criteria to correctly predict failure strength can be evaluated by 
comparing with experimental results. Among other factors, the accuracy of these criteria 
depends on availability of reliable material strength data, i.e., X, X´, Y, Y´ and S, or the 
corresponding ultimate strains. Except for longitudinal and transverse tensile strengths X and Y, 
good measurements of the compressive and shear strengths are not easy to obtain, which makes 
an objective assessment of the lamina failure criteria all the more difficult. 

Assuming that reliable uniaxial strength properties are available evaluating the failure criteria, 
failure loads of a lamina must be determined for a combined state of stress; i.e., at least two of 
the three stress components, σ11, σ22 and τ12 must be present.  The off-axis tension test offers the 
simplest way to produce a combined state of stress. 

2.3.1 Lamina Failure Criteria Comparison With Off-Axis Tension Data. 

Many authors have performed off-axis unidirectional lamina tensile tests. This test is performed 
by loading a uniform coupon specimen to failure. Because all the lamina failure criteria predict 
very similar failure loads, correlation with experimental data can’t be used as a means of ranking 
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these criteria. Tests of a boron-epoxy system by Pipes and Cole [8] illustrate this point. The 
strength properties of this material system are provided in table 2. Using those values, the 
theoretical predictions of the six lamina failure criteria along with the experimental data are 
plotted in figure 10. Only angles of 15°, 30°, 45°, and 60° were tested. For this range of angles, 
matrix failure dominates the strength. It is seen that the interactive and separate mode criteria 
yielded better predictions than the limit criteria. 

FIGURE 10. COMPARISON OF LAMINA FAILURE CRITERIA TO OFF-AXIS DATA 

TABLE 2. 	STRENGTH VALUES FOR THE BORON-EPOXY MATERIAL 
SYSTEM IN [8]. 

X 1296.2 MPa 
X´ -2489.0 MPa 
Y 62.1 MPa 
Y´ -310.3 MPa 
S 68.5 MPa 

Other sets of off-axis unidirectional data yield similar conclusions. Hashin and Rotem [9] tested 
a glass-epoxy system at a number of off-axis angles. The Hashin-Rotem criterion correlates with 
the data nearly perfectly, though other criteria (such as Hill-Tsai and Hashin) would have been 
just as close. 
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2.3.2 Lamina Failure Criteria Comparison With Tubular Specimens. 

In this section the use of uniaxial (hoop wound) tubular specimens is discussed. Use of a tubular 
specimen allows a biaxial state of stress to be applied to a composite laminate. Tubular 
specimens also eliminate the free edge effect found in flat coupon specimens, as has been 
verified by many authors including Colvin and Swanson [10]. 

Wu and Scheublein [11] generated biaxial lamina data using a graphite-epoxy (Morganite II) 
system with material constants shown in table 3. Figure 11 shows the predictions for the material 
system versus experimental data (σ11 - σ22 plane). Clearly all criteria match up at the four axis 
intercepts since those data points were used to generate the failure envelopes. The data in the 
tensile-compressive quadrant are not sufficient to show any distinction between the various 
criteria. 

FIGURE 11. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ11 - σ22 DATA 
FROM WU AND SCHEUBLEIN 

TABLE 3. 	STRENGTH VALUES FOR THE GRAPHITE-EPOXY MATERIAL 
SYSTEM IN [11]. 

X 1027.3 MPa 
X´ -710.2 MPa 
Y 43.4 MPa 
Y´ -125.5 MPa 
S 72.4 MPa 
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Jiang and Tennyson [12] used tubular specimens to characterize the failure of an IM7/8551-7 
graphite-epoxy material system. The elastic and strength constants for this system are shown in 
table 4. The tubes were tested in all three biaxial planes, σ11 - σ22, σ11 - τ12, and σ22 - τ12. 

TABLE 4. MODULI AND STRENGTH VALUES FOR IM7/8551-7 GRAPHITE-
EPOXY [12]. 

E1 162.0 GPa X 2417.39 MPa 
E2 8.34 GPa X´ -1034.94 MPa 
G12 2.07 GPa Y 73.09 MPa 
ν12 0.339 Y´ -175.82 MPa 

Ply Thickness: not provided S 183.41 MPa 

Figures 12, 13, and 14 show the predictions based on the material properties versus the 
experimental strengths. Again, the limited data inhibits any attempt to distinguish the 
performance among the criteria. 

FIGURE 12. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ11 - σ12 DATA 
FROM JIANG AND TENNYSON [12] 
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FIGURE 13. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ11 - σ12 DATA 
FROM JIANG AND TENNYSON[12] 
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FIGURE 14. COMPARISON OF LAMINA FAILURE CRITERIA TO σ22-σ12 DATA 
FROM TENNYSON AND JIANG 

Swanson et al. [13] obtained strength data for an AS4/55A unidirectional composite in the 
σ22 - τ12 plane. Table 5 lists the strength properties. Figure 15 contains theoretical predictions of 
the six lamina failure criteria compared with the experimental data. The plot shows that Hill-
Tsai, Tsai-Wu, Hashin-Rotem and Hashin (all including σ22 - τ12 stress interaction) predict the 
data very well for tensile σ22. However, for the combination of -σ22 and τ12, only Tsai-Wu 
performs well.  In fact, the test data indicate that lamina shear strength increases as the σ22 

component becomes compressive. 

In order to verify the aforementioned phenomenon, two more independent sets of σ22 - τ12 biaxial 
data were analyzed. The first set is a T800/3900-2 graphite-epoxy tested by Swanson and Qian 
[14]. The second set is from tests by Voloshin and Arcan [15] using glass-epoxy (Scotch-Ply 
Type 1002). Both sets of material strength constants are also given in table 5. Figures 16 and 17 
show the predictions from the six lamina failure criteria versus experimental data. The trend of 
an increasing shear strength as the σ22 term becomes more compressive is again seen. Further 
discussion on this phenomenon will be given in the next section. 
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TABLE 5. 	STRENGTH VALUES FOR MATERIAL SYSTEMS [13-15] USED 
IN σ22 - τ12 BIAXIAL FAILURE COMPARISONS 

AS4/55A Scotch-Ply 
(Type 1002) 

T800/3900-2 

X not provided X 1108.0 MPa X not provided 
X´ not provided X´ -617.8 MPa X´ not provided 
Y 26.7 MPa Y 19.61 MPa Y 65.0 MPa 
Y´ -94.7 MPa Y´ -137.30 MPa Y´ -200.0 MPa 
S 51.8 MPa S 36.92 MPa S 100.0 MPa 

FIGURE 15. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ22 - τ12 AS4/55A 
DATA FROM SWANSON, MESSICK, AND TIAN 
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FIGURE 16. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ22-τ12 T800 
DATA FROM SWANSON AND QUIAN 
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FIGURE 17. 	COMPARISON OF LAMINA FAILURE CRITERIA TO σ22 - τ12 

GLASS-EPOXY DATA FROM VOLOSHIN AND ARCAN 

2.4 ANALYSIS OF THE PHYSICAL BASIS FOR LAMINA FAILURE CRITERIA. 

All existing lamina failure criteria for composites are phenomenological or macromechanical in 
approach. In other words, they are more or less curve-fitting techniques. In order to judge their 
adequacy in failure prediction, we need to understand the failure mechanisms in the fiber/matrix 
system. 

It is reasonable to say that there are three failure modes in composites, namely, fiber failure, 
matrix failure, and fiber/matrix interfacial failure. Since, in general, the stresses in the fiber and 
matrix are different, their respective failures are determined by different strengths. Thus, a 
conceptually sound lamina failure criterion must start by separating the stress states in the fiber 
and matrix. 
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2.4.1 Fiber Failure. 

Assume that the stresses in the fiber are σ11
f , σ22

f and τ12
f . For convenience of discussion, we 

take the stress quadratic form as the failure criterion: 

f 2 f 2 f f f 2 
( 
σ 11 ) +(

σ 22 ) −( 
σ 11 )(

σ 22 ) +( 
τ 12 ) =1 (8)

X f Yf X f X f S f 

where Xf , Yf , and Sf are the fiber strengths. Transverse isotropy in the strength of the fiber is 
assumed. 

For unidirectional fiber composites with fiber volume fraction Cf, the fiber stresses are 
approximately related to the composite stresses as 

σ 11 f fσ 11 
f =

C f 

, σ 22 = σ 22 , τ 12 = τ 12 (9) 

The longitudinal composite strength X is related to the longitudinal composite strength Xf as 

X
X f =

C f 
(10) 

Using equations 9 and 10, equation 8 can be expressed in the form 

2 2 
( 
σ 11 )

2 
+( 

σ 22 ) −C f ( 
σ 11 )( 

σ 22 ) +( 
τ 12 ) =1 (11)

X Yf X X S f 

The values of σ22 and τ12 are limited by Y and S, respectively.  Since Yf >> Y,  X >> Y, and 
Sf >> S, the fiber failure criterion of equation 11 can be approximated by 

2 
( 
σ 11 ) =1 

σ 11 =1 (12) 
X or X 

This justifies the fiber failure criterion (equation 8) used in Maximum Stress, Maximum Strain, 
and Hashin-Rotem. 

2.4.2 Matrix Failure. 

Matrix failure is recognized as matrix cracking along the fiber direction. If cracking occurs in 
m mthe matrix, then all three matrix stress components σ11 , σ22

m , and τ12 are to be included in the 
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matrix quadratic failure criterion: 

m 2 m 2 m m m 2 
( 
σ 11 ) +(

σ 22 ) −( 
σ 11 )(

σ 22 ) +( 
τ 12 ) =1 (13)

Xm Ym Xm Xm Sm 

It is generally agreed that the fiber/matrix interface is the weaker surface, and so-called matrix 
cracking may actually occur along the fiber/matrix interface. Hence, failure is governed by the 

m m minterfacial stresses σ22 and τ12 . If σ11 is neglected and matrix stresses and strengths are 
assumed as 

m mσ 22 = σ 22 , τ 12 = τ 12  , Ym =Y  , Sm =S (14) 

equation 13 reduces to 
2 2 

(
σ 22 ) +(

τ 12 ) =1 (15)
Y S 

From the above discussion, it is obvious that Y and S in equation 15 should not be interpreted as 
only the tensile and shear strengths, respectively, of the neat resin. 

Thus, from the consideration of failure mechanisms in the composite system, the criteria for fiber 
failure and matrix failure should be separated. Equations 12 and 15 turn out to be exactly those 
proposed by Hashin and Rotem in equation 5. 

2.4.3 Generation of Failure Envelopes in the Stress Planes. 

In composites, tensile strengths X and Y are very different from the compressive strengths X´ 
and Y´.  For example, in using the Hill-Tsai criterion, proper strength values X or X´ and Y or Y´ 
must be selected based on the stress quadrant to be analyzed. This has been considered 
inadequate, and a single equation was desired with the result of the Tsai-Wu failure criterion. In 
2-D plane stress, Tsai-Wu is essentially Hill-Tsai with additional linear terms in σ11 and σ22. 
These linear terms allow Tsai-Wu to account for compressive and tensile stresses. Such a 
polynomial cannot be related to the concept of deformation energy. 

In view of the different tensile and compressive failure mechanisms, there is no reason for the 
lamina failure envelope to be described by a single equation as suggested by Tsai-Wu. It is 
difficult to argue that, for example, failure of a composite under biaxial tension should depend on 
its compressive strength properties and vice versa. Although mathematically more convenient, 
such a practice as adopted by Tsai-Wu may cause unreasonable failure predictions. As shown in 
figure 2, Tsai-Wu suggests that a compressive stress σ22 would increase the longitudinal strength 
of the composite. There are no known mechanistic reasons to support this. The fact |Y´| > |Y| 
causes the translation of the failure ellipse to the said position. 
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2.4.4 On the Maximum Strain Criterion. 

On the σ11 - τ12 and σ22 - τ12 planes (see figures 3 and 4), the Maximum Stress and Maximum 
Strain criteria predict identical results. However, for biaxial loading in the σ11 - σ22  plane (see 
figure 2), these two criteria differ significantly. The Maximum Strain criterion predicts that for a 
tensile longitudinal stress σ11, the tensile transverse stress σ22 would be greater than Y in order to 
fail the composite. Specifically, for σ11 near X, the σ22 required to cause failure is approaching 
2Y. If the transverse strength of the composite is controlled by the fiber/matrix interfacial 
strength, then this is not possible. 

It is concluded that the Maximum Strain criterion is not adequate for predicting the transverse 
matrix cracking failure mode where σ11 is present. 

2.4.5 Dependence of Shear Strength on Compressive Normal Stress σ22. 

.In all the existing lamina failure criteria, the lamina strengths X, Y, and S are assumed to be 
constants. However, from the three σ22 - τ12 biaxial plots in section 2.3.2.1 (figures 15-17), there 
is strong evidence that when the composite is subjected to a combined σ22 - τ12 loading, it 
becomes stronger when σ22 is compressive. More specifically, for given σ22 = ±σo, the shear 
stress τ12 at failure corresponding to σ22 = -σo is appreciably greater than the shear stress τ12 

corresponding to σ22 = +σo. 

This behavior indicates that a compressive fiber/matrix interfacial normal stress (which is 
proportional to σ22) would create a greater fiber/matrix interfacial shear strength. To reflect this 
behavior, the matrix failure criterion of equation 15 may be modified to 

2 2 
( 
σ 22 ) +( 

τ 12 ) =1 (16)Y S − µσ 22 

where 
µ o σ 22 <0 

µ =
0 σ 22 >0 

The term µ plays a role similar to friction coefficients. Equation 16, denoted the modified matrix 
criterion, still yields the expected values of σ22 = Y at τ12 = 0 and τ12 =S at σ22 = 0. 

In the absence of σ11, the linear stress terms in the Tsai-Wu criterion (see equation 4 ) produce a 
failure envelope in the σ22 - τ12 plane that exhibits a characteristic strengthening effect similar to 
that of equation 16. However, this effect would be reversed in the Tsai-Wu criterion in cases in 
which the transverse compressive strength |Y´| is less than the transverse tensile strength |Y|. 
Thus the Tsai-Wu criterion can be made to fit the data reasonably well, although with no physical 
basis. In fact, simply increasing the transverse tensile strength of the composite system would 
translate the half ellipse in figures 15-17 up and away from the data. The use by the Tsai-Wu of 
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the same compressive and tensile strengths criterion in all four stress quadrants is again 
considered suspect. 

Figure 18 shows AS4/55A data of [13] (from figure 15) plotted with the Tsai-Wu criterion and 
the modified matrix criterion, equation 16. It is clear from the comparison that the modified 
matrix criterion fits the data as well as Tsai-Wu. In this particular case, µ = 0.6 fits the data well. 
Figures 19 and 20 are simply replots of figures 16 and 17, respectively, with the modified matrix 
criterion added. Only one µ value (which most closely fits the data) is chosen for plotting. 
These plots also show the accuracy of this modified matrix approach in the σ22 - τ12 plane. More 
work in this area must be done to correlate µ with S and Y´. 

FIGURE 18. 	COMPARISON OF LAMINA FAILURE CRITERIA AND THE MODIFIED 
MATRIX CRITERION TO σ22 - τ12 AS4/55A DATA FROM SWANSON, 
MESSICK, AND TIAN 
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FIGURE 19. 	COMPARISON OF LAMINA FAILURE CRITERIA AND THE MODIFIED 
MATRIX CRITERION TO σ22 - τ12 T800 DATA FROM SWANSON, 
MESSICK, AND TIAN 
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FIGURE 20. 	COMPARISON OF LAMINA FAILURE CRITERIA AND THE MODIFIED 
MATRIX CRITERION TO σ22 - τ12 GLASS-EPOXY DATA FROM 
VOLOSHIN AND ARCAN 

2.4.6 Concluding Observations on Lamina Failure Criteria. 

From the comparison with experimental data and mechanistic reasoning, we conclude that a 
Separate Mode Failure criterion in the form 

σ 11 =1 for fiber failure 
X 

2 2 
( 
σ 22 ) +( 

τ 12 ) =1 for matrix failure (17)
Y S − µσ 22 

is most suitable for lamina failure prediction. 
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A modified form of Tsai-Wu failure criterion, 

σ 11 =1 for fiber failure 
X 

2F2σ 22 +F22σ 22 +2F12σ 11σ 22 +F66τ 12
2 =1 for matrix failure (18) 

is also adequate for most advanced composites (for which |Y’| > |Y|) based purely on its relative 
success in matching test data rather than mechanistic reasoning. 

3. LAMINATE FAILURE ANALYSIS. 

Classical laminate strength analysis is based on the assumption of a two-dimensional stress field 
in the laminate. Laminate failure is the eventual result of progressive failure processes taking 
place in the constituent laminae under loading.  Conceptually, a ply-by-ply failure analysis should 
yield the desired failure load for the laminate.  In reality, however, the failure mechanisms in 
laminates are a great deal more complicated than those in a unidirectional composite under plane 
stress. In addition to the three intralaminar failure modes (fiber failure, matrix tension, and 
matrix shear failure) occurring at the lamina level, three-dimensional failure mechanisms are 
present in the laminate, the most notable of which include delamination and failure induced by 
free edge singular stresses. Classical laminate strength analysis is restricted to those laminates 
whose failure is not dominated by 3-D failure modes. 

The effects of free edge stresses are usually treated separately from classical laminate failure 
analysis. It is thus generally assumed that the laminate is either free from free edge stresses or 
laminate failure does not initiate from the free edge. Some authors have utilized tubular 
specimens to avoid the effect of free edge stresses. The use of layers of film adhesive at the 
interlayers can also toughen the interface, forcing failure to occur in in-plane modes. This latter 
approach is taken in this study to enable the use of laminate coupon specimens for testing 
laminate strength. 

As lamina failure is progressive in nature, the progressive loss of lamina stiffnesses must also be 
accounted for in the laminate analysis. However, the local stress concentration effect due to 
matrix cracks is usually neglected except for laminates with thick laminae such as a [0/908/0] 

laminate. This local stress concentration effect on laminate strength was discussed by Sun and 
Jen [16]. 

3.1 STIFFNESS REDUCTION. 

Some of the laminate failure analysis methods consider a laminate capable of load bearing after 
an individual ply within the laminate has failed. These methods require a procedure for 
“discounting” the failed ply and reducing the laminate stiffness. Two methods for achieving this 
were developed for the present study, the Parallel Spring Model and the Incremental Stiffness 
Reduction Model. 
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3.1.1 Parallel Spring Model. 

Each lamina is modeled with a pair of springs representing the fiber (longitudinal) and matrix 
(shear and transverse) deformation modes. The entire laminate is modeled by grouping together 
a number of parallel lamina spring sets as shown in figure 21. When fiber breakage occurs, the 
longitudinal modulus is reduced. When matrix cracking occurs, the shear and transverse moduli 
are reduced. The value to which the moduli are reduced was arbitrary although it was commonly 
set equal to zero. 

σ 

∙ ∙ ∙ ∙ 

E1 

E2 and G12 

lamina 1 lamina 2 lamina n 

σ 


FIGURE 21. SCHEMATIC OF THE PARALLEL STIFFNESS MODEL 

This model is also capable of differentiating between types of matrix failure if desired; i.e., the 
transverse and shear moduli can be reduced separately depending on the specific type of matrix 
failure mode. The model which reduces E1 for fiber failure and E2 and G12 for either transverse 
or shear matrix failure is denoted the PSM. The model which reduces E1 for fiber failure, E2 for 
transverse matrix failure, and E2 and G12 for shear matrix failure is denoted the PSMs. The idea 
behind the PSMs is that a transverse matrix failure doesn’t necessarily inhibit the ability of the 
lamina to carry significant shear loads. Creating these two different reduction models has little 
micromechanical basis and is done mainly for curve fitting purposes. 
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3.1.2 Incremental Stiffness Reduction Model. 

To avoid the sudden jump in strain at ply failure seen in the Parallel Spring Model, a model 
resembling the bilinear hardening rule in classical plasticity can be formulated. Laminate 
stiffness reduction is achieved similar to the Parallel Spring Model. However, it is assumed that 
the reduced laminate stiffness governs only the incremental load-deformation relations beyond 
immediate ply failure. 

Both of these stiffness reduction models have flexibility. Instead of reducing the appropriate 
moduli suddenly after a ply failure, a nonlinear function such as exponential function may be 
used to gradually reduce these values. This progressive softening approach may model certain 
laminates better than others, i.e., those laminates whose failure is dominated by matrix cracking. 

For most fiber-dominated composites, setting the stiffness constants directly to zero after the 
corresponding mode of failure is simple and unambiguous. The use of such reduction can be 
justified by regarding the laminate analysis to be at the in-plane (x, y) location where all ply 
failures would occur. Consider a 90° lamina (within a laminate) containing a number of 
transverse matrix cracks, as shown in figure 22. The 90° ply still retains some stiffness in the 
loading direction (E2 direction locally).  However, the assumption is made that ensuing 0° fiber 
failure will occur at the weakest point. This point is where matrix cracking has occurred in the 
90° plies or where locally E2 = 0. Thus, it is acceptable to reduce E2 directly to zero after 
transverse matrix cracking for the ultimate strength analysis. 

E2 E1 

0° plies: E1 90° ply: E2 

90° ply’s E2 = 0 at crack 

σ σ 

matrix cracks 

FIGURE 22. SCHEMATIC OF LAMINATE WITH MATRIX CRACKS 

Since matrix cracks are discrete, the portion of a failed lamina between two cracks would still 
contribute substantially to the laminate stiffnesses. It is obvious that such drastic lamina stiffness 
reduction, if assumed to be true over the whole laminate, would overestimate the ultimate strains 
of the laminate.  In fiber-dominated laminates, the effect of matrix cracks on the overall laminate 
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stiffness is usually very small. It is reasonable to estimate the laminate ultimate strains by using 
the virgin laminate stress-strain relations and the laminate failure stresses obtained from the 
laminate failure analysis. 

3.2 LAMINATE FAILURE ANALYSIS METHODS. 

As with lamina failure analysis, a variety of laminate failure analysis methods have been 
proposed. Following is a description of each methodology. 

3.2.1 Ply-By-Ply Discount Method. 

This is a very common method for laminate failure analysis. The laminate is treated as a 
homogeneous material and is analyzed with a lamina failure criterion. Laminated plate theory is 
used to initially calculate stresses and strains in each ply.  A lamina failure criterion is then used 
to determine the particular ply which will fail first and the mode of that failure. A stiffness 
reduction model is used to reduce the stiffness of the laminate due to that individual ply failure. 
The laminate with reduced stiffnesses is again analyzed for stresses and strains. The lamina 
failure criterion predicts the next ply failure and laminate stiffness is accordingly reduced again. 
This cycle continues until ultimate laminate failure is reached. 

A number of definitions have been proposed on how to determine ultimate laminate failure. One 
common way is to assume ultimate laminate failure when fiber breakage occurs in any ply. 
Another way is to check if excessive strains occur (i.e., yielding of the laminate stiffness matrix). 
Matrix-dominated laminates such as [±45]s may fail without fiber breakage. Others have 
suggested a “last ply” definition in which the laminate is considered failed if every ply has been 
damaged. For this project, the laminate failure is defined as occurring when either fiber breakage 
occurs in any ply or the reduced stiffness matrix becomes singular. 

3.2.2 Sudden Failure Method. 

In highly fiber dominated composite laminates, effect of the laminate stiffness reduction due to 
progressive matrix failures on the laminate ultimate strength is insignificant. This suggests that 
in such laminates the progressive stiffness reduction seen in the previous method may be 
unnecessary, and laminate failure may be taken to coincide with the fiber failure of the load-
carrying ply (the ply with fibers oriented closest to the loading direction). To perform this 
analysis, a lamina failure criterion is chosen and the failure load is determined by calculating the 
load required for fiber failure in the dominant lamina.  No stiffness reductions are included in the 
process. The laminate strength predicted by the sudden failure method is usually higher than the 
laminate strength predicted by the ply-by-ply discount method. 

The strength analysis program listed in appendix B includes both the ply-by-ply discount method 
and the sudden failure method. 
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3.2.3 Hart-Smith Criterion:[17-19] The Truncated Maximum Strain Envelope. 

A laminate failure criterion was proposed by Hart-Smith [17-19] based on the assumption that 
for a fiber dominated laminate, failure can be attributed to shear failures of the fibers, and that 
laminate failure can be treated as a projection of a multiaxial fiber failure criterion onto laminate 
stress space. The Hart-Smith criterion does not require a ply-by-ply discount procedure. The 
failure envelope is given in the strain space that corresponds to an “extended” Tresca (maximum 
shear stress) yield criterion. 

Initially, the Hart-Smith failure criterion was based on experimental results (see reference 17 and 
figure 14 of reference 19) on in-plane shear failures in ±45° laminates which gave strengths 
about half of what is expected when the shear stress is resolved into pure tension and 
compression in the fiber directions. Hart-Smith attributed the low laminate strength 
measurements to the presence of biaxial stresses which were believed to induce shear failures in 
the fibers. Hart-Smith also makes frequent reference to observations such as those described in 
reference 17 on conically shaped fracture surfaces of tension loaded carbon fibers that were 
interpreted as shear failures. From these observations Hart-Smith concluded that in many cases 
laminate failure can be reduced to shear failures in the fibers. Denoting L and T as the in-plane 
longitudinal and transverse directions with respect to the fibers and N the out-of-plane normal 
direction, it was suggested that these shear failures could be characterized as “L-T” failures, 
“L-N” failures, and “T-N” failures corresponding to differences between principal stresses in the 
L and T directions, the L and N directions, and the T and N directions; these stress differences 
resolve into shear stresses in the three planes lying at 45 degrees to the three pairs of coordinate 
directions. 

Application to a laminate containing 0° and 90° laminae under biaxial loadings in the 0° and 
90°€directions is illustrated in figure 23. In the figure, εo is the tensile failure strain of the fiber 
and εo′ is the compressive failure strain of the 0° lamina which may be less than εo because of 
microbuckling which precedes the fiber rupture under compression. (A method for modifying 
the failure criterion for matrix failure under transverse tensile stresses has also been described in 
references 17-19 and elsewhere.) The strain coordinates εx and εy are laminate strains which are 
assumed to be the same as the strains in the fiber.  In general the Hart-Smith criterion is intended 
for fiber dominated laminates which contain more than two reinforcement directions. A 
procedure for applying the criterion to more general laminates which include ±45° reinforcement 
as well as to loadings which include in-plane shear is discussed in the pertinent references (see 
reference 17, for example). 

The failure envelope (called truncated maximum strain criterion by Hart-Smith) shown in figure 
23 in terms of strains in the 0/90 laminate is based on superposition of the individual lamina 
failure envelopes such as the one shown in figure 24 for the 0 degree lamina, and is essentially 
the same as the Sudden failure method (no matrix failure is assumed) in conjunction with the 
Maximum Strain criterion. The only difference between figure 23 and the conventional 
Maximum Strain criterion is the 45° cutoff lines in the 2nd and 4th quadrants. The lamina failure 
envelope shown in figure 24 represents the projection onto lamina strain space of the fiber failure 
surface based on the three shear failure modes. The discussion in references 17-19 indicates that 
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FIGURE 23. HART-SMITH’S TRUNCATED MAXIMUM STRAIN FAILURE 
ENVELOPE FOR LAMINATES 

the 45 degree lines in the second and fourth quadrants in figure 24 correspond to L-T failures, 
while those in the first and third quadrants corresponding to the lines at angles -α to the 
horizontal and -β to the vertical represent T-N and L-N failures, respectively.  With the out-of-
plane stress σN equal to zero in typical laminate applications, the latter conditions amount to 
constant σT and constant σL cutoffs, respectively.  (As indicated in the notation at the upper left 
of figure 24, α and β are related to the Poisson ratios of the lamina as required to produce these 
constant stress conditions.) 

The translation from the fiber failure surface to the lamina strain surface depends on the 
assumption made by Hart-Smith that  the longitudinal and transverse strains in the lamina are the 
same as those in the fiber. For the longitudinal strains this is obviously a valid assumption. 
However, for the transverse strains it is suspect, since except for aramid fibers, typical 
reinforcements are much stiffer than the usual polymer matrices so that the fiber strains will tend 
to be considerably less than the effective lamina strain except for high-volume fractions for 
which the fibers are nearly in contact. This will have the effect of distorting the lamina strain 
envelope in figure 24 and the corresponding laminate strain envelope in figure 23 to some extent, 
although a precise assessment of the modification would require a micromechanics analysis. 

There are certain issues that need to be resolved in connection with the Hart-Smith approach to 
failure. The most crucial is that of whether or not there are 45-degree cutoffs of the lamina 
failure envelope in the second and fourth quadrants. As indicated previously, without the cutoffs 
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FIGURE 24. FAILURE STRAIN ENVELOPE PROPOSED BY HART-SMITH FOR FIBERS 

the Hart-Smith criterion reduces to the maximum Strain or Maximum Stress criterion. Data on 
failure of laminates under biaxial loading which is discussed later will throw light on this issue. 

In addition, the evidence for shear failures in fibers under normal stress loading as well as the 
implications of low shear strength in ±45-degree laminates need to be explored more fully. The 
experimental results cited by Hart-Smith for these phenomena are somewhat limited and have 
not been confirmed to any extent by other workers. Further work in this area appears to be 
warranted. In this regard data on torsion tests of ±45-degree filament wound tubes are available 
[20] which may throw some light on the issue of low shear strength in ±45-degree laminates. 

3.3 LAMINATE FAILURE ANALYSIS UNDER BIAXIAL LOADING. 

Given the laminate failure analysis methods discussed, the six lamina failure criteria can be 
characterized by their ability to predict failure in a laminate under biaxial loading.  Since data for 
quasi-isotropic laminates under biaxial σxx - σyy loading are readily available, it is appropriate to 
start the evaluation here. 
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A quasi-isotropic [0/±45/90]s laminate is examined using the ply-by-ply discount method in 
conjunction with the Parallel Spring Model (PSM) for laminate stiffness reduction. In this 
analysis, the appropriate lamina moduli reduce directly to zero at the individual ply failures. The 
laminate is assumed to reach ultimate failure when any ply within the laminate fails by fiber 
breakage.  Figure 25 shows the predictions of the six lamina failure criteria assuming the 
laminate is made up of the material system found in table 1. This laminate is subjected to pure 
σxx - σyy biaxial loading with τxy = 0. 

FIGURE 25. FAILURE ENVELOPE OF [0/±45/90]s LAMINATE USING PLY-BY-PLY 
DISCOUNT METHOD AND PSM STIFFNESS REDUCTION 

Before the ply-by-ply discount method can be properly assessed with different lamina failure 
criteria, it is important to understand the sensitivity of this method to the applied loads. 
Figure 26 examines the Hill-Tsai envelope from figure 25. Just the tensile σxx quadrants I and IV 
are shown here since they suitably illustrate the characteristics to be discussed. Indeed, this 
failure envelope contains both linear and quadratic regions with significant jumps in predicted 
failure loads as the biaxial loading sweeps through the two quadrants. As the biaxial σxx - σyy 

load changes, the stresses and strains in each lamina change. This fact compounded with large 
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differences in tensile and compressive strengths for the material used produces different ply 
failure combinations in each region of the failure envelope. 

FIGURE 26. 	FAILURE ENVELOPE OF [0/±45/90]s LAMINATE USING PLY-BY-PLY 
DISCOUNT METHOD AND HILL-TSAI LAMINA FAILURE CRITERION 

The first quadrant is completely symmetrical about 45° (σxx = σyy), due to the nature of this 
quasi-isotropic laminate. Regions A and D are quadratic because when the fiber dominant ply 
fails, there is still coupling among all components in that ply.  For example, in region D, the 0° 
ply still carries σ11, σ22, and τ12 when it finally fails. In regions B and C on the other hand, every 
ply in the laminate experiences matrix failure before the final ply failure. Therefore, σ22 = τ12 = 
0 for every ply in the laminate. This will result in a linear relationship since there is no coupling 

38




of the stress components, only σ11 exists in each lamina. Comparison of regions D and E shows 
how differences in intermediate ply failures do not necessarily alter the ultimate failure of the 
laminate. The second ply failure in regions D and E take place in the ±45 degree plies in both 
mode 2 and 3. The Parallel Spring Model used in this analysis method does not discriminate 
between types of matrix failure; thus, the laminate stiffness is reduced similarly in both regions. 
In region F, the final failure in the 90° ply is linear because there was previous failure in the 90° 
ply’s matrix, therefore σ22 = τ12 = 0 for that ply.  Region G shows how a laminate in certain 
loading situations can be very fiber dominant. In region H, the addition of an initial ±45° ply 
failure slightly changes the character of the previous curve in region G. 

Again, a comparison of all the lamina failure criteria used with this particular laminate failure 
analysis method is shown in figure 25. The Tsai-Wu lamina failure criterion yields a 
combination of quadratic and linear regions, which is similar to the Hill-Tsai criterion for the 
same reasons. The characteristic of the Tsai-Wu failure envelope for this laminate is different 
from the Hill-Tsai prediction because of the linear terms contained in Tsai-Wu, though similar 
trends are seen between the two criteria.  The limit criteria (Maximum Stress and Maximum 
Strain) produce a nearly linear laminate failure envelope as expected. The Maximum Stress 
criterion contains a small jump in predicted failure load near the tensile uniaxial loading cases. 
This occurs because Maximum Stress considers the ±45° ply as the critical ply of the laminate in 
this particular loading situation. Ultimate failure is predicted when the ±45° ply has matrix 
failure. Unrealistic laminate strains occur if the analysis attempts to continue by looking for a 
fiber failure. 

Since Maximum Strain, Hashin, and Hashin-Rotem criteria predict virtually the same failure 
envelope as Maximum Stress, they are plotted as one curve. Maximum Strain produces a slightly 
larger failure envelope due to Poisson’s effect. The Hashin and Hashin-Rotem criteria match up 
almost exactly with the limit criteria in the analysis of this particular laminate. Because Hashin 
and Hashin-Rotem allow for stress interaction between σ22 and τ12, the jumps in failure seen in 
Maximum Stress and Maximum Strain do not occur; though not seen in the figure, the curve 
would maintain the same slope through this critical region. 

It is clearly shown in figure 25 that except in the third stress quadrant, all failure criteria yield 
roughly the same laminate strengths. We note that in the first quadrant all plies have failed in 
matrix mode before the laminate fails by fiber breakage. Although the ply failure sequences 
predicted by the failure criteria could be different, the end results are the same. On the other 
hand, in the third stress quadrant, there are no ply matrix failures preceding fiber failure, and all 
the stress components are fully “active” in the failure criteria, resulting in very different laminate 
strength predictions between the fully interactive criteria (Hill-Tsai and Tsai-Wu) and other 
criteria. 

Figure 27 shows the comparison between the sudden failure method and the ply-by-ply discount 
method for the quasi-isotropic laminate under biaxial loading. The Maximum Stress criterion is 
used in the analysis. As expected, the sudden failure method predicts higher laminate strength 
except in quadrant III where ply-by-ply discount laminate failure matches the sudden failure 
assumptions. 
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FIGURE 27. FAILURE STRESS ENVELOPE FOR AN AS4-3501-6 [0/±45/90]s 

LAMINATE UNDER BIAXIAL LOADS USING PLY-BY-PLY 
DISCOUNT (THE PSM) AND SUDDEN FAILURE METHODS 

Figure 28 shows the failure strain envelope corresponding to the failure stresses of figure 27. In 
the strain plane, the predictions of the ply-by-ply discount method and the sudden failure method 
agree everywhere except for a few locations where the ply-by-ply discount method exhibits some 
kinks. A careful examination of the computer output reveals a special failure process as follows. 
For the loading condition in these regions (kinks), the 0° (or 90°) ply suffers matrix failure first. 
When the load reaches some critical value, the ±45° plies fail in matrix mode, followed 
immediately by the fiber failure of the 0° (or 90°) ply without any increase of loading. In other 
words, the matrix failure of ±45° plies leads to catastrophic failure of the laminate. Thus, the 
ultimate failure strain of the laminate for the loading ratios in that range is the failure strain 
corresponding to the matrix failure of ±45° plies, which is smaller than the fiber failure strain. 
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FIGURE 28. 	FAILURE STRAIN ENVELOPES CORRESPONDING TO THE FAILURE 
STRESS ENVELOPE OF FIGURE 27 

3.3.1 Comparison of Data for Biaxial Loading. 

Recently Swanson et al. [19, 21] performed biaxial testing on an AS4/3501-6 graphite-epoxy 
[0/±45/90]s laminate using tubular specimens. The ply properties given by Swanson are listed in 
table 6. Note that they are slightly different from those given by table 1. Also, the longitudinal 
modulus E1 is taken as the average of the initial modulus and the secant modulus reported 
in [21]. 

TABLE 6. MODULI AND STRENGTH VALUES OF AS4/3501-6 GRAPHITE-EPOXY 
SYSTEM IN [19, 21]. 

E1 134.60 GPa X 1986.0 MPa 
E2 11.03 GPa X´ -1193.0 MPa 
G12 5.52 GPa Y 47.9 MPa 
ν12 0.28 Y´ -168.0 MPa 

Ply Thickness: 0.13 mm S 95.7 MPa 

Figure 29 shows Swanson’s data in the first and fourth quadrants of the σxx - σyy plane plotted 
against various failure envelopes. The predicted envelopes are generated with the six lamina 
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failure criteria in conjunction with the ply-by-ply discount method. Comparing with the data, it 
is evident that the predictions of all six lamina failure criteria agree with the data very well. 
However, as discussed in section 3.3, the fully interactive criteria such as Hill-Tsai and Tsai-Wu 
are very sensitive to the sequence of lamina matrix failures and can be significantly affected by 
the sudden reduction of matrix stiffness, resulting in jumps in strength, as shown in figure 29. 

FIGURE 29. 	COMPARISON OF ULTIMATE STRESS ENVELOPES WITH 
EXPERIMENTAL DATA FOR A [0/±45/90]s LAMINATE UNDER 
BIAXIAL LOADS 

Swanson and Qian [14] also tested laminate tubes in the σxx - σyy plane. The [0/±45/90]s, 
[03/±45/90]s, and [0/(±45)2/90]s data presented in reference 14 (I and IV quadrants only) matched 
well with the Maximum Strain analysis. Considering that all lamina failure criteria are in close 
agreement in these quadrants for the π/4 laminate, it is clear that they should all be adequate for 
these laminates. 

3.3.2 Biaxial Failure in the Strain Plane. 

The failure strains corresponding to the failure stress envelopes of figure 29 are plotted in 
figure 30. It is interesting to note that the failure strain envelopes predicted by Maximum Stress, 
Maximum Strain, Hashin, and Hashin-Rotem criteria essentially coincide with the limits set by 
the ultimate tensile strain (Xε) and compressive strain (Xε́) of the unidirectional composite. 
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However, these limit strains should not be automatically taken as the ultimate strains of the 
laminate at failure. For the π/4 quasi-isotropic laminate under biaxial loading in the third stress 
quadrant (compressive σxx and σyy), there are no ply matrix failures before ultimate laminate 
failure. Thus, there is no stiffness reduction before laminate failure, and the calculated failure 
strain is the laminate failure strain. 

FIGURE 30. 	COMPARISON OF ULTIMATE STRAIN ENVELOPES WITH 
EXPERIMENTAL DATA FOR A [0/±45/90]s LAMINATE UNDER 
BIAXIAL LOADS 

Under tensile biaxial loading (tensile σxx and σyy), all plies in the laminate have suffered matrix 
failure before laminate final failure. The drastic reduction (to zero) of ply transverse and shear 
stiffnesses tends to overestimate the ultimate strains. Therefore, the strain failure envelope as 
shown in figure 30 should not be used directly in laminate strength design without accounting for 
the stiffness reductions. 

In figure 31, the Hart-Smith criterion is compared with the Maximum Strain criterion (with the 
ply-by-ply discount method) and the experimental data of Swanson and Trask [21]. 
Hart-Smith [17] used different strength data; otherwise his prediction would have coincided with 
the Maximum Strain criterion except for the 45° shear cutoffs. From the data, the 45° cutoff 
does not seem to be necessary. 
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FIGURE 31. COMPARISON OF MAXIMUM STRAIN AND HART-SMITH’S ULTIMATE 
STRAIN ENVELOPES WITH EXPERIMENTAL DATA FOR A [0/±45/90]s 

LAMINATE UNDER BIAXIAL LOADS 

3.3.3 Biaxial Testing Data For Glass Woven Fabric Composite. 

Recently, Wang and Socie [23-24] performed biaxial testing on NEMA G-10 E-glass plain 
woven fabric composite laminates. They used both tubular specimens and flat square specimens. 
Strength data were obtained for all four biaxial loading quadrants. Their test results clearly 
indicate that the laminate failure strain envelope is bounded by the uniaxial ultimate strains of the 
laminate. Specifically, they found that failure in one direction was not affected by loading in the 
transverse direction. Hence, the failure strain envelope appears to be rectangular as predicted by 
the Maximum Strain and Maximum Stress criteria.  For this composite laminate, the 45° shear 
cutoff as proposed by Hart-Smith was not observed. 

3.4 LAMINATE STRENGTH ANALYSIS FOR UNIDIRECTIONAL OFF-AXIS LOADING. 

Laminate strength data are available for coupon specimens under uniaxial loading. In most cases 
though, free edge stresses control the initiation and final failure of these laminates. Data as such 
are not suitable for evaluating the laminate failure analysis methods as attempted here. However, 
by placing film adhesive at the interfaces of laminate coupon specimens, it is possible to suppress 

44




these 3-D effects. This type of coupon specimen is used to generate additional laminate strength 
data for the purpose of evaluating the failure criteria. 

3.4.1 Generation of Laminate Failure Curve for Off-Axis Loading. 

Theoretically predicting laminate strength under off-axis loading is similar to the lamina case 
(see figure 5). All plies of the laminate are simply rotated the same amount as the angle of 
loading.  The newly created laminate is then subjected to a unidirectional load in the global x-
direction. For example, a [0/±45]s laminate under 10° off-axis loading would be analyzed as a 
[10/+55/-35]s laminate under a unidirectional load in the x-direction. The failure curve for a 
laminate under such loading is generated by calculating the ultimate strength at each off-axis 
loading angle in a desired range. Typical laminate symmetry requires only a portion of the entire 
360° range to be analyzed. 

3.4.2 Selection of Laminates and Off-Axis Loading Angles. 

A variety of laminates was theoretically examined in advance of actual strength testing. Only the 
ply-by-ply discount method was used to determine ultimate laminate strength. Laminate layups 
and loading angles were chosen so as to provide a comparison of the six lamina failure criteria. 
The focus of the experiment was to examine whether these failure criteria could predict the 
correct trend of the laminate strength versus the loading angle. It was not necessary to evaluate 
the ability of the lamina failure criteria to predict laminate strength over the entire possible range 
of loading angles. 

Table 7 shows the laminates and off-axis loading angles selected. Included in these tests were 
unidirectional laminate specimens for principal material. Five or more tests were performed at 
each off-axis loading angle to provide accurate mean results. In the table, “A” indicates the 
location of an adhesive film in the laminate. 

TABLE 7. LAMINATES AND OFF-AXIS LOADING ANGLES TESTED 

Laminate Off-Axis Angles Tested 
[0]8 0° & 90° 

[0/A/+45/A/-45/A/90]s 0° - 22.5° every 7.5° 
[90/A/0/A/90/A/0]s 0° - 7.5° every 1.5°, 15°, 22.5° 
[0/A/+45/A/-45]s 0° - 30° every 7.5°, 26°, 45° 
[90/A/+30/A/-30]s 0° - 22.5° every 7.5° 

3.4.3 Consideration of Curing Stresses and in Situ Lamina Strength. 

The mismatch of thermal expansion coefficients of the fiber and matrix can cause residual 
thermal stresses (curing stresses) to form within the laminate during the manufacturing process. 
Typically these stresses place the matrix in tension. These stresses can be significant; thus, they 
should not be neglected if prediction of matrix failure is of importance. 
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Another issue in laminate analysis is the in situ strength of constituent laminae.  Flaggs and Kural 
[25] found that the in situ transverse strength Y could be as high as 2.5 times the unidirectional 
transverse strength. This can clearly be a cause of inaccurate strength predictions. 

As it turns out, curing stresses in graphite/epoxy composite laminates are typically of a 
magnitude similar to the unidirectional transverse strength Y. Since the in situ lamina strength is 
not available, in this study, the effect of curing stresses is neglected. The rationale is that the 
underestimation of in situ strength Y will be offset by neglecting the effect of curing stresses. 

3.4.4 Laminate Coupon Specimens. 

The material used for testing was AS4/3501-6 graphite-epoxy from Hercules. A 0.13-mm-thick 
ply of film adhesive was added at each lamina interface except the middle interface because of 
symmetry.  The adhesive was FM 1000 marketed by AmericanCyanamid. The elastic and 
strength properties of this material were determined by Sun and Zhou [7] and are listed in table 8. 

TABLE 8. MATERIAL PROPERTIES FOR FM 1000 FILM ADHESIVE 

σult 38 MPa 

E 1.724 GPa 
G 0.648 GPa 
ν 0.33 

Ply Thickness: 0.127 mm 

Guidelines given by ASTM [26] were followed in the preparation of the coupon specimens. 
Specimens were cut, using a water jet, from 12- by 12-inch square laminate panels manufactured 
in the manner recommended by Hercules. All specimens were 0.75 inch wide with a 6.75 inch 
gage section. This yielded a 9 to 1 aspect ratio. Water-jet cutting gave smooth edges which were 
free from initial matrix cracks and delamination. X-ray photography was used to verify the free 
edge condition for a few individual specimens. 

End tabs were used to protect them from being damaged in the test machine grips. A standard 
epoxy adhesive was used for this purpose. For those laminate specimens with anisotropic 
stiffness, it was important not to overlook the effect of shear-extension coupling.  Highly 
anisotropic laminate coupon specimens can fail prematurely due to stress concentrations in the 
tab region if rectangular tabs are used. In order to accommodate the deformation induced by the 
extension-shear coupling, oblique end tabs suggested by Sun and Chung [27] were used. See 
figure 32. The oblique angle φ was derived using extensional laminate stiffnesses A11 and A16 as 

cot φ = − A16 /A11 (27) 
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FIGURE 32. EXAMPLE OF OBLIQUE END TABS 

It was demonstrated by Sun and Chung [27] that, using oblique end tabs, an almost uniform state 
of stress corresponding to uniaxial loading could be generated in off-axis laminate coupon 
specimens rigidly gripped during loading.  In quasi-isotropic laminates, extension-shear coupling 
is absent and standard rectangular tabs were used. 

Glass-epoxy and graphite-epoxy quasi-isotropic laminates were used for oblique end tabs. For 
the rectangular tabs , material stiffness is not as critical, and chopped-fiberglass circuit board was 
used. The tab length was determined by assuming an ultimate failure load and then sizing the 
necessary tab area based on the strength of the epoxy system used for tab bonding. In all cases, 
the tabs measured 0.75 inch wide and a minimum of 1.25 inches long. Some oblique tabs were 
extended to 2.25 inches in order to assure good adhesion to the coupon specimen. 
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3.4.5 Testing Procedure. 

Tests were performed in the Composite Materials Laboratory (CML) at Purdue University. All 
specimens were mechanically loaded in tension at a stroke rate of 0.1 inch/min on an MTS 810 
servohydraulic test machine. This was equal to a strain rate of approximately 1.5% per minute, 
which adheres to ASTM guidelines for fiber composites. Tests were performed at room 
temperature.  The majority of tests were designed to determine ultimate load and in some cases 
ultimate strain. Hence, only load, displacement, and strain (if applicable) were measured during 
tensile loading.  These values were displayed in real time through a data acquisition package on a 
personal computer. 

The first set of coupons tested were 0° and 90° unidirectional laminates. All specimens were 
strain gauged to determine the appropriate elastic constants. Table 9 lists the results. Only the 
moduli E1, E2, ν12	 and the strength values X and Y were determined in the present test. The 
strengths S, X´, and Y´ were taken from a similar AS4/3501-6 material system given by Sun and 
Zhou [7].  The shear modulus G12	 in [7] was obtained from testing [±45]s laminate and is lower 
than 6.9 GPa as obtained by Daniel [28] using a more reliable method. This value is listed in 
table 9. 

TABLE 9. 	MODULI AND STRENGTH VALUES FOR THE TESTED AS4/3501-6 
GRAPHITE-EPOXY SYSTEM 

E1	 153.7 GPa X	 2171.0 MPa 
E2	 11.0 GPa X	 -2013.0 MPa 
G12	 6.9 GPa Y	 67.0 MPa 
v12	 0.32 Y	 -206.8 MPa 

Ply Thickness: 0.13 mm S	 110.3 MPa 

Ultimate laminate stress for the unidirectional laminate coupon specimens (0° and 90°) was 
determined by dividing the measured ultimate load by the cross-sectional area (width by 
thickness). The 8-ply unidirectional laminates had an average thickness of 1.04 mm; thus the 
nominal ply thickness was assumed as 0.13 mm (0.0051 in.). 

For laminates containing layers of film adhesive, the calculation of ultimate stress must account 
for the thickness and stiffness of the film adhesive in determining the true graphite-epoxy 
laminate strength. First, it is assumed that the total measured ultimate load is the summation of 
the load carried by the composite and the load carried by the adhesive, i.e., 

Pexp	 = PC	 + PA	 (28) 

It is also assumed that the composite and adhesive loads can be separated by the rule of mixtures: 

 E hA A 	 
PA =




A11 + E	 h	 
 Pexp	 (29)

A A 	
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 A11	 

PC =




A11 + E	 h	 
 Pexp$

A A 	

 	 (30)


where EA	 is the adhesive modulus, hA	 is total thickness of all adhesive layers in the laminate, and 
A11 is the total extensional stiffness calculated just for the graphite-epoxy plies. Equation 30 is 
used to obtain the true composite ultimate load from the experimental load. The laminate 
strength is then determined by dividing PC	 by the total cross-sectional area of the composite 
plies. Table 10 shows all the averaged ultimate stress data for the tested laminates. 

TABLE 10. ULTIMATE LAMINATE STRESSES (MPa) 

Off-Axis Loading Angle 0° 7.5° 15° 22.5° 26° 30° 45° -
[0/A/+45/A/-45/A/90]s 765 752 774 832 - - - -

[0/A/+45/A/-45]s 883 843 929 1028 1129 1074 818 -
[90/A/+30/A/-30]s 966 908 837 807 - - - -

Off-Axis Loading Angle 0° 1.5° 3° 4.5° 6° 7.5° 15° 22.5° 
[90/A/0/A/90/A/0]s 1126 1140 1074 1018 861 713 394 288 

Though the majority of ultimate failures were caused by fiber rupture, a few specimens were 
matrix dominated in which fiber failure did not occur. In the matrix dominated coupon tests, the 
specimen never fractured into two (or more) pieces. Instead, the deformation continued until 
reaching a strain of approximately 3% at which the test was stopped. As seen in figure 33, a 
[90/A/0/A/90/A/0]s laminate loaded at 22.5° exemplifies this behavior. For comparison, the 
stress-strain curve for a [0/A/+45/A/-45]s laminate loaded at 45° is also plotted, which 
demonstrates the behavior involving typical fiber failure. 
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FIGURE 33. 	STRESS-STRAIN CURVES CHARACTERIZING FIBER AND MATRIX 
FAILURES 

3.4.6 Comparison With Test Data. 

Theoretical predictions of the different lamina failure criteria using the ply-by-ply discount 
method for laminates under off-axis loading are compared with the experimental data. Both the 
PSM and PSMs are considered to assist in analyzing experimental trends. 

Figures 34 and 35 show theoretical predictions for the [0/A/+45/A/-45/A/90]s laminate obtained 
using the PSM and PSMs stiffness reduction procedures, respectively.  The theoretical 
predictions with the PSMs are slightly higher in regions where transverse matrix cracking has 
occurred. This is because the transversely failed lamina retain shear stiffness which results in 
higher lamina stiffness and, consequently, laminate strength. 

The experimental data (CML data) for the [0/A/+45/A/-45/A/90]s laminate shows an increase in 
strength as the off-axis loading angle rotates from 0° to 22.5°. Maximum Stress, Maximum 
Strain, and Hashin-Rotem all theoretically predict this increase, supporting the idea of separating 
fiber failure (governed by fiber stress σ11) from matrix failure (governed by matrix stresses σ22	

and τ12). 
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FIGURE 34. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [0/A/+45/A/-45/A/90]s 

LAMINATE UNDER UNIDIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSM) 

FIGURE 35. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [0/A/+45/A/-45/A/90]s 

LAMINATE UNDER UNIDIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSMs) 
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Figures 36 and 37 compare CML data with the theoretical predictions for the [90/A/0/A/90/A/0]s 

laminate, using the PSM and PSMs procedures, respectively.  The data favor the use of the PSMs, 
suggesting that this laminate at small off-axis angles retains its shear stiffness after transverse 
matrix cracking in the 90° plies. The fully interactive criteria of Hill-Tsai and Tsai-Wu 
underestimate the strength of the laminate. The Hashin criterion is closer to the data than the 
fully interactive criteria.  Again, the criteria (Maximum Stress, Maximum Strain, and Hashin-
Rotem) which separate fiber failure from matrix failure best match the data. 

FIGURE 36. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [90/A/0/A/90/A/0]s 

LAMINATE UNDER DIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSM) 
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FIGURE 37. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [90/A/0/A/90/A/0]s 

LAMINATE UNDER UNIDIRECTIONAL  LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSMs) 

Data from the [0/A/+45/A/-45]s laminate are displayed in figures 38 and 39. The difference 
between the PSM and the PSMs is slight due to the fact that the laminate is dominated by shear 
matrix failure (for which both reduction models treat the same).  Overall, Maximum Stress, 
Maximum Strain, and Hashin-Rotem are clearly the best fit for the data. In the off-axis region 
from 0° to 20°, the Tsai-Wu criterion closely fits the data. However, the overall trend of Tsai-
Wu’s predication is quite different from the experimental data. 
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FIGURE 38. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [0/A/+45/A/-45]s 

LAMINATE UNDER UNIDIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSM) 

FIGURE 39. COMPARISON OF ULTIMATE STRENGTHS FOR A [0/A/+45/A/45-45]s 

LAMINATE UNDER UNIDIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSMs) 
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Data from the [90/A/+30/A/-30]s laminate are displayed in figures 40 and 41. As with the 
[0/A/+45/A/-45]s laminate, differences between the PSM and the PSMs are slight. Once again, 
Maximum Stress, Maximum Strain, and Hashin-Rotem match both the magnitude and the trend 
of the data. 

FIGURE 40. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [90/A/+30/A/-30]s 

LAMINATE UNDER UNIDIRECTIONAL LOADING USING DIFFERENT 
LAMINA FAILURE CRITERIA (WITH THE PSM) 
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FIGURE 41. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [90/A/+30/A/-30]s 

LAMINATE UNDER UNIDIRECTIONAL  LOADING USING 
DIFFERENT LAMINA FAILURE CRITERIA (WITH THE PSMs) 

3.5 OBSERVATIONS ON LAMINATE FAILURE CRITERIA. 

From the four different sets of laminate strength data presented in the previous section, it is clear 
that the interactive criteria (Hill-Tsai and Tsai-Wu) and Hashin criterion (which couples σ11 and 
τ12) not only underestimate ultimate laminate failure but cannot correctly predict the trend of the 
data. On the other hand, Maximum Stress, Maximum Strain, and Hashin-Rotem criteria all 
perform quite well. 

Simply put, those criteria which separate fiber failure completely from matrix failure are 
relatively insensitive to inaccurate lamina strengths Y and S. There is some matrix strength 
sensitivity in these criteria from the effects of intermediate ply failures (failure preceding ultimate 
fiber failure). However, the fully interactive criteria and the Hashin criterion are considerably 
more sensitive to inaccurate matrix strengths. This can be illustrated by increasing the lamina 
matrix strengths used in the theoretical analysis of the tested laminates. 

The sensitivity of the interactive criteria to matrix strength is demonstrated by the ultimate 
strength curves of the [0/A/+45/A/-45/A/90]s laminate in figure 42. The Hill-Tsai failure 
criterion is plotted using three different lamina shear strength values. The PSM is used for this 
analysis. Thus, the curve labeled “Hill-Tsai with S = 1.0” is the same as the Hill-Tsai curve from 
figure 34. The other two curves in figure 42 are for the strengths 2 x S and 2.5 x S, respectively. 

56




FIGURE 42. 	COMPARISON OF ULTIMATE STRENGTHS FOR A [0/A/+45/A/-45/A/90]s 

WITH DIFFERENT LAMINA SHEAR STRENGTHS USING HILL-TSAI 
CRITERION 

All other material constants remain the same. It is clear that by simply increasing the shear 
strength of the lamina, the Hill-Tsai criterion takes on a completely different trend, predicting an 
increase in strength instead of a decrease as the off-axis loading angle increases from 0° to 22.5°. 
With these high shear strengths, this criterion now correctly predicts the trend and magnitude of 
the experimental data. 

Another issue often raised is whether matrix cracking actually occurs in composite laminates 
with well dispersed laminae. To answer this question, we tested [0/90/0] and [0/90/0]s laminates 
of AS4/3501-6 graphite/epoxy composite. Coupon specimens were tested under tension. 
Figure 43 clearly shows the presence of matrix cracks in the 90° plies at the load about 95% of 
the laminate strength. Thus, we conclude that matrix cracking does occur and the ply-by-ply 
discount process in laminate failure analysis is justified. 
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FIGURE 43. 	EVIDENCE OF 90° PLY MATRIX CRACKS IN [0/90/0] AND [0/90/0]s 

LAMINATES OF AS4/3501-6 GRAPHITE-EPOXY COMPOSITE 

4. CONCLUSIONS. 

In this study, the following conclusions were obtained. 

•	 At the lamina level, those criteria (such as the Hashin-Rotem criterion) which separate the 
fiber failure mode from the matrix failure mode are the most reasonable and accurate. 
This is supported by test data and a micromechanical consideration which indicates that 
fiber failure and matrix failure should be governed by different failure criteria. 

•	 For fiber-dominated laminates, Maximum Stress, Maximum Strain, and Hashin-Rotem 
failure criteria outperform other criteria.  These criteria are insensitive to variations in 
matrix strengths (Y and S) which are very difficult to obtain in situ. 

58




•	 The interactive failure criteria (Hill Tsai, Tsai-Wu, and Hashin) are sensitive to variation 
of the matrix-dominated lamina strengths (i.e., Y and S).  Accurate in situ composite 
strengths are critical to the use of these criteria. Because of the interaction among all 
stress components, sudden switching of failure modes makes the failure envelope (in 
stress or strain) very jumpy. 

•	 Experimental results indicate that matrix cracking does take place even in laminates with 
well dispersed laminae. Thus, the ply-by-ply discount of stiffnesses in failed laminae is 
justified. 

•	 The Parallel Spring model for stiffness reductions is adequate for analysis of laminate 
strengths. The drastic ply stiffness reduction (the concerned stiffness is set equal to zero 
after ply failure) does not cause appreciable errors in the predicted laminate strength for 
fiber-dominated laminates. 

•	 At this point, available failure data does not appear to support the 45-degree fiber shear 
failure cutoffs of the Hart-Smith lamina failure criterion, although further effort on this 
issue appears warranted. In addition, data supporting Hart-Smith’s contention of shear 
failures in tension loaded fibers together with low shear strength values of ±45-degree 
laminates is somewhat limited and needs to be further developed. Failure data on ±45-
degree filament wound tubes tested in torsion such as that in reference 20 is relevant to 
the issue of low shear strength in ±45-degree laminates and should be examined further. 

5. RECOMMENDATIONS. 

•	 For fiber-dominated laminates, maximum stress, maximum strain, and Hashin-Rotem 
failure criteria should be used to obtain most reliable laminate strength prediction. 

•	 To predict lamina matrix failure in a laminate, the in situ transverse strength (Y) and 
shear strength (S) should be used. 

•	 For matrix-dominated laminates and loadings, all six failure criteria can be used. 
Laminate failure should be declared when excessive strains occur. 

•	 None of the laminate failure criteria investigated here based on the assumption of a 2-D 
stress state are valid for strength prediction at free edges in a composite structure. 
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APPENDIX AA LIST OF FAILURE CRITERIA [1, 2] 

The Limit Criteria: 

Maximum Stress: 

σ11 = 1 
X 

σ22 = 1 
Y 

τ12 = 1 
S 

Maximum Strain: 

ε11 = 1 
Xε 

ε22 = 1 
Yε 

γ 12 = 1 
Sε 

Stowell-Lin: 

σ11 = 1 
Xf 

σ22 = 1 
Y m 

τ12 = 1 
S m 

Kelly-Davies: 

σ11 = 1 
Xf 

σ22 = 1 
1.15Ym 

τ12 = 1 
1.5Sm 

Prager: 

σ11 = 1 
Xf 

σ22 = 1 
f 1(Ym , Sm ) 

τ12 = 1 
f 2 (Ym , Sm ) 

Maximum Shear Stress: 

1

2 (σ11 − σ22 )sin2θ = Sa


1

2 (σ11 cos2 θ + σ22 cos2 θ) = St


1

2 (σ11 cos2 θ + σ22 sin2 θ) = St


1 (σ11 − σ22 )cos2θ = Ss2 

A-1




X X  

The Interactive Criteria: 

Hill: 

 σ 1  2 

+ 
σ 22  2 

+ 
σ 33  2 

− 
 1 + 1

2 
− 1 


σ σ 22 − 



 

1
2 

+ 1
2 

− 1
2 




σ 1 σ 33 

X 
  

Y   
Z  

 X
2 

Y Z 
2 

 
1 

 X Z Y  

−


 

Y 

1
2 

+ 
Z 

1
2 

− 
X 

1
2 





σ σ 33 




 τ 
S 
12 





 

2 
+  τ 23  2 

+ 

 τ 13 



 

2 
= 122  

T  
 R  

2 2 2 σ11   σ22   1 1 
 X  +  Y  −  X 2 + 

Y 2 − 
Z 

1
2 
 
σ11σ22 +  

 τ 
S 
12 

 
 = 1 

Tsai-Hill: 

2 2 2 σ11   σ22  −  σ11  σ22   τ12  = 1 X  +  Y   X   X  +  S  

Marin: 

)2 )2 )2(σ1 − a +(σ22 − b + (σ33 − c + 

q[(σ1 − a)(σ22 − b)+ (σ22 − b)(σ33 − c)+ (σ33 − c)(σ1 − a)]= σ 2 

2σ1
2 + K1σ1 σ22 + σ22 + K2σ1 + K3σ22 = K4 

K1 = −  
XX'−S[X'− X − X' (X / Y) + Y ]

2 
2 

S 

' ' (K2 = −  K3 =X X / Y ) − Y K 4 = XX' 

Franklin: 

2K1σ11
2 + K2σ11σ22 + K3σ22

2 + K4σ11 + K5σ22 + K6τ12 = 1 

Stassi D’Alia: 

Xσ11
2 + σ22

2 + σ11σ22 + X(X′ / X − 1)(σ11 + σ22 )= ′
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Norris-Mckinnon: 

2 2 2 σ11   σ22   τ12  = 1 X  +  Y  +  S  

Norris: 

2 2 2 2 2 2 σ11   σ11   σ22   σ22  +  τ12  = 1 
 σ11   σ11   σ22   σ22  +  τ12  = 1 X  −  X   Y  +  Y   S   X  −  X   Y  +  Y   S  

2 2 2 2 σ22  −  σ22   σ33   σ33  +  τ23  = 1 Y   Y   Z  +  Z   T  
 
 

σ 
Y 
22  

 = 1 

2 2 2 2
 σ33  −  σ33   σ11   σ11  + τ13  = 1 Z   Z   X  +  X   R  

 
 

σ 
X 
11  

 = 1 

Fischer: 

2 2 2 σ11   σ22   τ12  − 
E1(1 + ν21 )+ E2(1+ ν12 ) σ11σ22 

 X  +  Y  +  S  2 E1E2(1 + ν12 )(1 + ν21 ) XY 
= 1 

Yamada-Sun: 

2 2 σ11   τ12  
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Griffith-Baldwin: 
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Chamis: 
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The Separate Mode Criteria: 

Hashin-Rotem: 
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 σ11   τ12  

 X  +  S  = 1


σ11 = 1

X′ 

2 2

 σ22  +  τ12  = 1
 Y   S  

2 2
 σ22  +
 Y ′  

σ22  τ12  
2 

= 1
 

 2ST  

 2ST  
− 1 


 Y ′ 

+  S  
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APPENDIX BA COMPUTER CODE FOR STRENGTH ANALYSIS OF

LAMINATED COMPOSITES


S A L C  v 1 . 1  

Strength Analysis of Laminated Composites 

User’s Guide 

Written in FORTRAN 

Overview 

The purpose of this program is to provide a thorough analysis of the failure progression leading 
to ultimate failure in laminated composites. The program utilizes 2-D classical laminated plate 
theory with a Ply-by-Ply Discount laminate analysis method. Ultimate laminate stress or strain 
can be calculated for any fiber reinforced material system under any combination of applied 
stresses σxx, σyy and τxy. 
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THEORETICAL DISCUSSION 

1. LAMINA FAILURE ANALYSIS. 

The purpose of the lamina failure criterion is to determine the strength and mode of failure of a 
unidirectional composite or lamina in a state of combined stress. All the existing lamina failure 
criteria are basically phenomenological in which detailed failure processes are not described 
(macromechanical). Further, they are all based on linear elastic analysis. The failure load 
(lamina strength) is determined by evaluating the set of equations provided in each criterion. 
These equations compare lamina stresses (or strains) to material strengths in the principal 
directions. 

The majority of the lamina failure criteria assume a 2D orthotropic material which is transversely 
isotropic. Lamina strengths are defined in a composite system as follows (values in stress): 

X & X´ : tensile and compressive strengths in fiber direction. 

Y & Y´ : tensile and compressive strengths in transverse direction (perpendicular to 

fibers). 
S : shear strength 

For a strain based analysis, similar strain strengths may be used: Xε , Xε´, Yε , Yε ́ , and Sε . The 
ability of the lamina failure criterion to determine mode of failure is essential in bringing this 
analysis tool to the laminate level (an individual lamina failure within a laminate doesn’t 
necessarily constitute ultimate failure).  Modes of failure are defined as: 

Fiber Breakage (mode 1): 

Transverse Matrix Cracking (mode 2): 

Shear Matrix Cracking (mode 3): 

longitudinal stress (σ11) or longitudinal strain (ε11) 

dominates lamina failure. 

transverse stress (σ22

dominates lamina failure. 

) or transverse strain (ε22) 

shear stress (τ12

lamina failure. 

) or shear strain (γ12) dominates 

It is important to point out that both mode 2 and mode 3 are matrix failures. The two modes are 
separated because different stress components cause the failure, though the result is the same. 
Hence, mode 2 should be interpreted as matrix cracking due to σ22, and mode 3 should be 

interpreted as matrix cracking due to τ12. The notation is for convenience, and it should be 
assumed that the resulting matrix crack is the same regardless of “failure mode.” 
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1.1 A SURVEY OF LAMINA FAILURE CRITERIA. 

Lamina failure criteria can be categorized into three groups: 

• Limit Criteria:  These criteria predict failure load and mode by comparing lamina 
stresses σ11 , σ22 , and τ12 (or strains ε11 , ε22 , and γ12 ) separately. Interaction between the stresses 
(or strains) is not considered. 

• Interactive Criteria:  These criteria predict the failure load by using a single quadratic or 
higher order polynomial equation involving all stress (or strain) components. Failure is assumed 
when the equation is satisfied. The mode of failure is determined indirectly by comparing the 
stress/strength ratios. 

• Separate Mode Criteria:  These criteria separate the matrix failure criterion from the 
fiber failure criterion. The equations can be dependent on either one or more stress components; 
therefore, stress interaction varies from criterion to criterion within this group. If the satisfied 
equation contains only one stress component, then the failure mode corresponds to that particular 
direction; otherwise, the failure mode can be determined as is done with the interactive criteria by 
comparing stress/strength ratios of the satisfied equation. 

• Six commonly used lamina failure criteria are available in the program SALC. 

Limit Criteria 

• 	Maximum Stress: 
σ 
11 = 1 fiber failure 
X 

σ 
22 = 1 transverse matrix cracking (1)
Y 

τ 

• Maximum Strain: 
ε 11 

Xε 

ε 22 

Yε 

γ 12 

Sε 

12 = 1 shear matrix cracking
S 

= 1 fiber failure 

= 1 transverse matrix cracking (2) 

= 1 shear matrix cracking 
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Interactive Criteria 

• Hill-Tsai: 
2 2 2F1σ 11 + F2σ 22 + F11σ 11 + F22σ 22 + 2F12σ 11σ 22 + F66τ 12 = 1 (3) 

• Tsai-Wu: 
2

F1σ11 + F2σ 22 + F11σ11

2 + F22σ 22

2 + 2F12σ 11σ 22 + F66τ12 = 1 (4) 

where 
1 1 1 1 −1 − 1 1 experimenta

F1 = 
X 

+ 
X ′ 
,F2 = 

Y 
+ 
Y′ 
, F11 = 

XX′ 
, F22 = 

YY′ 
,F66 = 

S
2 , F12 = 

determine 

Separate Mode Criteria 

• Hashin-Rotem: 
σ 11 = 1 fiber failure 
X 

2 2 
( 
σ 22 ) + ( 

τ 12 ) = 1 matrix failure (5)
Y S 

• Hashin: 
τ12 2( 

σ 

X 
11)2 + ( 

S 
) = 1 fiber failure (tension) 

σ 11 = 1 fiber failure (compression)
X ′ 

τ12 2( 
σ 

Y 
22 )2 + (

S 
) = 1 matrix failure (6) 

For Maximum Stress, Maximum Strain, Hill-Tsai, and Hashin-Rotem, the criterion is 
generalized for either tensile or compressive stresses: the corresponding (tensile or compressive) 
strength constant must be chosen based on the sign of the applied stress. The Tsai-Wu criterion 
is designed for use in all stress quadrants of any stress plane, thus may be used directly without 
modification for different stress signs. Tsai-Wu’s criterion requires a biaxial test to 
experimentally determine the interaction term F12. It has been suggested to use F12 = 1/(2XX´), 
which reduces Tsai-Wu down to the Hoffman criterion. Some researchers have found the term to 
be insignificant, and suggest setting it equal to zero. 

There is strong evidence that when a unidirectional composite is subjected to a combined σ22 - τ12 

loading, it becomes stronger when σ22 is compressive. More specifically, for given σ22 = ±σo, the 

shear stress τ12 at failure corresponding to σ22 = -σo is appreciably greater than the shear stress τ12 

corresponding to σ22 = +σo. This behavior indicates that a compressive fiber/matrix interfacial 
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normal stress (which is proportional to σ22) would create a greater fiber/matrix interfacial shear 
strength. To reflect this behavior, the matrix failure criterion of equation 5 may be modified to 

σ τ 
12
(

Y 
22 )2 + (

S− µ σ
22

)2 = 1 (7) 

where 

µ o σ 22 < 0 
µ =  

 0 σ 22 > 0 

The term µ plays a role similar to friction coefficients. 

2. LAMINATE FAILURE ANALYSIS METHODS. 

As with lamina failure analysis, a variety of laminate failure analysis methods have been 
proposed. Following is a description of each methodology: 

Ply-by-Ply Discount Method 

This is a very common method for laminate failure analysis. The laminate is treated as a 
homogeneous material and is analyzed with a lamina failure criterion at a mechanistic level. 
Laminated plate theory is used to initially calculate the state of stress and strain in each ply given 
the global loading situation and the material’s elastic and strength properties. A lamina failure 
criterion is then used to determine the particular ply which will fail first and the mode of that 
failure. A stiffness reduction model is used to reduce the stiffness of the laminate, due to that 
individual ply failure. The laminate with reduced stiffnesses is again analyzed for stresses and 
strains. Lamina failure criterion predicts the next ply failure and laminate stiffness is accordingly 
reduced again. This cycle continues until ultimate laminate failure is reached. 

There has been a number of definitions proposed on how to determine ultimate laminate failure. 
One common way is to assume ultimate laminate failure when fiber breakage occurs in any ply. 
Another way is to check if excessive strains occur (i.e., a singular laminate stiffness matrix). 
Matrix-dominated laminates such as [±45]s may fail without fiber breakage. Others have 

suggested a “last ply” definition in which the laminate is considered failed if every ply has been 
damaged. For this program, the laminate is loaded until fiber breakage occurs in any ply, unless 
the reduced stiffness matrix is singular which denotes a matrix dominated ultimate failure. 

Sudden Failure Method 

In highly fiber-dominated composite laminates, the laminate stiffness reduction due to 
progressive matrix failures insignificantly affects the laminate ultimate strength. This suggests 
that in such laminates the progressive stiffness reduction seen in the previous method may be 
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unnecessary, and laminate failure may be taken to coincide with the fiber failure of the load 
carrying ply (the ply with fibers oriented closest to the loading direction). To perform this 
analysis, a lamina failure criterion is chosen and the failure load is determined by calculating the 
load required for fiber failure in the dominant lamina.  No stiffness reductions are included in the 
process. The laminate strength predicted by the Sudden Failure method is usually higher than by 
the Ply-by-Ply Discount method. 

Direct Laminate Method 

This method examines the laminate as a whole, using effective strength values in the laminate 
principal directions. An equation or set of equations using these values and the applied stresses 
predict the failure of the laminate in a similar fashion to the lamina failure criteria, but at a 
laminate level. Of course, the laminate strength values are applicable to just the particular 
laminate being analyzed, hence a change in layup could require a different set of laminate 
strengths. There seems little reason to justify such an inflexible phenomenological approach to 
laminate analysis. This method is not offered in SALC. 

2.1 STIFFNESS REDUCTION 

After an individual ply within the laminate has failed, the following two methods offer a way to 
“discount” the failed ply and reduce the laminate stiffness accordingly: 

Parallel Spring Model 

Each lamina is modeled with a pair of springs representing the fiber (longitudinal) and matrix 
(shear and transverse) deformation modes. The entire laminate is modeled by grouping together 
a number of parallel lamina spring sets as shown in Figure B-1. When fiber breakage occurs, the 
longitudinal modulus is reduced. When matrix cracking occurs, the shear and transverse moduli 
are reduced. The value to which the moduli are reduced is arbitrary. 

This model is also capable of differentiating between types of matrix failure if desired; i.e., the 
transverse and shear moduli can be reduced separately depending on the specific type of matrix 
failure mode. The model which reduces E1 for fiber failure and E2 and G12 for either transverse 
or shear matrix failure is denoted the PSM. The model which reduces E1 for fiber failure, E2 for 
transverse matrix failure, and E2 and G12 for shear matrix failure is denoted the PSMs. The idea 
behind the PSMs is that a transverse matrix failure doesn’t necessarily inhibit the ability of the 
lamina to carry loading in the shear direction. Creating these two different reduction models has 
little micromechanical basis, and is done mainly for curve fitting purposes. 
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lamina 1 lamina 2 

E 
1 

∙ ∙ ∙ ∙ ∙ 

E nd G 
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a 12 

σ 

FIGURE B-1. SCHEMATIC OF THE PARALLEL STIFFNESS MODEL 

Incremental Stiffness Reduction Model 

To avoid the sudden jump in strain at ply failure seen in the Parallel Spring Model, a model 
resembling the bilinear hardening rule in classical plasticity can be formulated. Laminate 
stiffness reduction is achieved similar to the Parallel Spring Model. However, it is assumed that 
the reduced laminate stiffness governs only the incremental load-deformation relations beyond 
immediate ply failure. This model in not available in SALC. 

For most fiber-dominated composites, setting the stiffness constants directly to zero after the 
corresponding mode of failure is simple and unambiguous. The use of such reduction can be 
justified by regarding the laminate analysis to be at the in-plane (x, y) location where all ply 
failures would occur. Consider a 90° lamina (within a laminate) containing a number of 
transverse matrix cracks, as shown in Figure B-2. The 90° ply still retains some stiffness in the 
loading direction (E2 direction locally).  However, the assumption is made that ensuing 0° fiber 
failure will occur at the weakest point. This point is where matrix cracking has occurred in the 
90° plies, or where locally E2 = 0. Thus, it is acceptable to reduce E2 directly to zero after 
transverse matrix cracking for an ultimate strength analysis. This is the approach used in SALC. 
Since matrix cracks are discrete, between two cracks a failed lamina would still contribute fully 
to the laminate stiffnesses. It is obvious that such drastic lamina stiffness reduction, if assumed 
to be true over the whole laminate, would greatly overestimate the ultimate strains of the 
laminate. In fiber-dominated laminates, the effect of matrix cracks on the overall laminate 
stiffnesses is usually very small. It is reasonable to estimate the laminate ultimate strains by 
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matrix cracks90° ply’s E2 = 0 at crack

0° plies: E1

E2

90° ply:

E1

E2

σ σ 

FIGURE B-2.  C OF LAMINATE WITH MATRIX CRACKS

using the virgin laminate stress-strain relations and the laminate failure stresses obtained from
the laminate failure analysis.

Using the Program

The program is designed to calculate ultimate laminate stress and strain for any type of laminate
under inplane applied stresses σxx, σyy and τxy.  rmal stresses arising from the manufacturing
process may also be calculated (but not included in the failure analysis).  Following below is a
step by step explanation of how to run the program.  nput, output, or file names associated with
the program are identified with the font courier.

1.  nput

These instructions are provided for a unix operating system, though the program should run
similarly on any platform.  The executable (program) requires these additional text files in order
to run (examples at end of guide):

mat.info Text file containing the number and names of other text files listing material
properties to be used by the code.  irst line is the number of text files with
the names of the material files following.

lam.info Text file containing the number and type of laminates to be used by
program.  First line is the number of laminates followed by a blank line.
Then each laminate is entered, first with the number of plies, followed by
the name of the laminate, followed by each ply angle in order as found in the
laminate.

SCHEMATI

The

I

I

F



?????	 Any file listed in mat.info which is a material property file.  See example�
at end of guide for order of material constants.�

The user can customize these files.  The idea for this setup is to allow each user to generate a list�
of material properties and laminate families frequently used.�

Once the program is executed, it reads in mat.info and provides a list of material files to�
choose from:�

Enter material data file for analysis (#) ... 

Enter in the file # desired.  Next the program asks what type of laminate to analyze:�

Enter # of laminate/ply choice... 

Likewise, enter in the desired laminate.  Next the program asks if thermal stresses (strains)�
should be calculated.  NOTE, these are not included in the failure analysis.  Only the mechanical�
strains are considered in the failure analysis:�

Do you want to calculate thermal stresses? 

1:yes other:no 

If yes, the program then prompts,�

Enter delta T: 

Enter the effective thermal drop during the curing cycle.  Next the program asks what type of�
loading to place the laminate under:�

Enter Mechanical Loading Envelope #: 

1: Nx/Ny 2: Nx/Nxy 3: Ny/Nxy 4: Pure Thermal 

Enter in the desired biaxial loading envelope in options #1-3.  Or the user may opt to just�
examine the thermal stresses and strains by choosing option #4 (no mechanical loading nor�
failure analysis is performed).  Option #1 assumes Nxy = 0.  Option #2 assumes Ny = 0.  Option�
#3 assumes Nx = 0.  Once a biaxial loading plane is chosen, the program prompts�

Enter load-angle range and step, (i.e., 0,90,10) 

Figure B-3. shows a schematic of how to apply a biaxial load.  Consider option #1 (Nx and Ny�
applied with Nxy = 0).  The load is applied as a vector pointing in any circular direction.  By�
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changing the angle (β) of the vector, the components Nx and Ny are altered. These components 
may be either in tension or compression. Examples: 

• pure unidirectional tensile Nx: enter 0,0,1  (zero to zero degrees, one step) 
• pure unidirectional compressive Ny: enter 270,270,1 
• complete Nx-Ny biaxial failure envelope: enter 0,360,5  (failure point every 5°) 

In the last example, the program calculates an ultimate laminate failure at 72 points (360°/5°) 
around the Nx-Ny biaxial envelope. The user may choose a finer or coarser number of steps, or 
may choose just to examine any subsection of the entire envelope. The other two biaxial planes 
would operate in a similar fashion. For all three biaxial cases, the first component listed is on the 
x-axis (0° and 180°) and the second component listed is on the y axis (90° and 270°). 

Ny (tension) 

Nx (compression) Nx (tension) 

Loading Vector N 

0° 

270° 

180° 

90° 

β 

Ny (compression) 

FIGURE B-3. SCHEMATIC OF APPLIED LOADING VECTOR 

Once the applied loading is set, the program asks for a lamina failure criterion and stiffness 
reduction model to be used in the failure analysis: 

Enter failure criterion and reduction model (i.e., 1,1)


1: Hill-Tsai 1: Parallel Spring Model


2: Maximum Stress 2: Parallel Spring Model(s)


3: Maximum Strain 3: Sudden Failure Model


4: Tsai-Wu 4:


5: Hashin-Rotem 5:
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 6:  Hashin                                6:�

 7:  all                                   7:�

If option #7 is entered for the failure criterion, the program analyzes the chosen laminate with all�
six available lamina failure criterion (i.e., entering� 7,1  does an analysis using� all six� lamina�
failure criteria along with the Parallel Spring Model for stiffness reduction). See the� theory�
section for explanation of reduction models #1 PSM and #2 PSMs. If option #3 is chosen as the�

reduction model, the� program simply calculates the “dominant” ply’s fiber failure strength and�
ends the analysis in one step.�

If Tsai-Wu is chosen, the program asks for the interactive coefficient� F12 found in equation 4:�

Enter F12 interaction factor for Tsai-Wu:�

  Return = default of 0.0�

The value that is entered is then multiplied by 1/(XX´). This is done since those terms are�
frequently found in F12. For example, if 0.5 is entered, F12 = 1/(2XX´) which would reduce Tsai-�
Wu to the Hoffman criterion (not offered in SALC).  As explained in the� theory� section�
previously, many researchers suggest setting� F12 to zero.�

If Hashin-Rotem is chosen, the program asks whether or not to include the interaction factor µ 
(as described in equation 7):�

Include mu factor with Hashin-Rotem criterion?�

 1:yes     other:no�

If yes, the program prompts for the value�

Enter mu:�

Enter a value for µ (typically between 0.0 and 1.0).�

At this point, the program is capable of varying the angle of the chosen laminate’s plies. It� the�
loading angle β has been varied, it is not suggested to vary any ply angles: this will produce a�
3-D data file which can be difficult to work with. The user is prompted with�

Do you want to vary any ply angle theta?�

 1:yes     other:no�

If yes, the program asks�

Off-Axis Laminate Loading?  1:yes     other:no�

B-11•



Off-axis laminate loading simply rotates the entire laminate at an angle θ. If yes�

Enter off-axis range and step:�

Just as in the loading case, the program requires an angle range and step. For example, if� you�
entered 0,45,1  the program would rotate the entire laminate in 1° increments from 0° to 45°�
and calculate ultimate laminate failure at each point.�

If you choose “no” to off-axis laminate loading, the program reminds you of the chosen laminate:�

Here is the original laminate: ([0/±45/90]s for example)�
Enter angle of ply to vary...�

The program is able to vary only one ply’s theta. Enter the angle of the ply to change. Both ±�
values of a ply may be changed (i.e., ±60 or ±45).�

Vary both signs of this ply (if applicable)?�

 1:yes     other:no�

This allows, for example, the ±45° plies to become ±θ° plies if desired.�

Enter range of theta with step:�

As before, enter the angle range and step of the ply to vary. A typical example of this feature�
would be to change a [0/±45]s laminate to [0/±θ]s, and vary� θ.�

Lastly, the program asks�

Do you want to create a detailed file ‘analysis’?�

 1:yes     other:no�

This is a� very� large� file� detailing� all steps in the failure analysis. Beware that this file can grow�
very large (many megabytes if not careful) and slow down the program. If either the loading�
angle β or ply angle θ is varied over 10 steps or more, it is suggested that analysis not be�
generated.�
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2. OUTPUT�

The program� creates a variety� of output� files. All are automatically generated with the exception�
of analysis.�

out.file, Simple� output� file which gives laminate stresses and strains at each ply�
failure (including ultimate failure).�

bistrs, Data� file for graphing. Intended for plotting biaxial failure envelopes.�
Contains 20 columns in the order: ply angle θ, loading angle� β, Hill-Tsai’s�
ultimate� σxx, σyy and τxy; Max. Stress’ ultimate� σxx, σyy and τxy; Max. Strains’�

ultimate� σxx, σyy and τxy; Tsai-Wu’s ultimate� σxx, σyy and τxy; Hashin-Rotem’s�

ultimate� σxx, σyy and τxy; Hashin’s ultimate� σxx, σyy and τxy.�

bistrn, Data file for graphing. Identical to bistrs but replaces ultimate stresses σxx,�

σyy, and τxy with ultimate strains εxx, εyy, and γxy.�

unstrs, Data file for graphing. Intended for plotting off-axis laminate failure loads�
under unidirectional Nx. Contains eight columns in the order: ply angle θ,�
loading angle β, Hill-Tsai’s ultimate� σxx, Max. Stress’ ultimate� σxx, Max.�

Strains’ ultimate� σxx, Tsai-Wu’s ultimate� σxx, Hashin-Rotem’s ultimate� σxx,�

Hashin’s ultimate� σxx.�

unstrn� Data file for graphing. Identical� to unstrs but replaces ultimate stress σxx�

with ultimate strain εxx.�

analysis, Very� detailed file containing step by step analysis of laminate failure.�
Includes all stiffness matrices, stresses and strains in each ply, and failure�
analysis summary.�

B-13•



APPENDIX�

Following are examples of SALC’s input and outputs. In order they are:�

mat.info� available material input•
example.data� material system file explaining order of constants•
aae555.data� available material system (in psi)•
exp.data� available material system (in MPa)•
lam.info� available laminate data file•
ex1� example of input for [0/±45/90]s laminate under tensile Nx•

out.file� output from ex1*
analysis.1� detailed output from ex1*
ex2� example of input for [90/0]s laminate’s thermal stress calculation•
analysis.2� detailed output from ex2*
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